
N O V E L  E Y E  F E A T U R E  E X T R A C T I O N  
A N D  T R A C K I N G  F O R  N O N - V I S U A L   
E Y E - M O V E M E N T  A P P L I C A T I O N S  

 

 

BY 
GEORGIOS DIAMANTOPOULOS 

 

 

A THESIS SUBMITTED TO  

THE UNIVERSITY OF BIRMINGHAM  

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 

 

 

 

DEPARTMENT OF ELECTRONIC, ELECTRICAL  

AND COMPUTER ENGINEERING 

COLLEGE OF ENGINEERING AND PHYSICAL SCIENCES 

THE UNIVERSITY OF BIRMINGHAM 

FEBRUARY 2010   



2 
 

ABSTRACT 

The Neuro-Linguistic Programming (NLP) Eye-Accessing Cues (EAC) model suggests that there is 

a correlation between eye-movements and the internal processing mode that people employ 

when accessing their subjective experience. Upon careful examination, the experimental 

methodologies of past research studies were based on assumptions informed by an incomplete 

or erroneous understanding of the EAC model that could have significantly influenced the 

experimental results. The reliability of the results can be further impacted by the absence of 

modern eye-tracking equipment to support the inherently complex task of reliably recording, 

selecting and rating eye-movements.  While a plethora of eye-tracker designs is available to date, 

none of them has been designed to track non-visual eye-movements (eye-movements that are a 

result of neuro-physiological events and are not associated with vision), which tend to range 

outside the normal visual field and thus perform poorly in such cases. Therefore, this thesis 

introduces a set of novel algorithms for the extraction of relevant eye features (pupil position, 

iris radius and eye corners) that are combined to calculate the 2D gaze direction and to classify 

each eye-movement to one of eight classes from the EAC model. The applicability of the eye-

tracker is demonstrated through a pilot study that serves as a real-world application case study. 

The performance of the eye-tracker is found to be practical for the intended purpose as it is 

lightweight, low-cost and can robustly perform the tasks of 2D gaze direction estimation and 

classification. 
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CHAPTER 1: INTRODUCTION 

This research work is concerned with the development of an eye-tracker that is able to track eye-

movements over the maximum range of movement of the eyes and is targeted towards 

applications that are concerned with non-visual eye-movements. These eye-movements tend to 

extend beyond the normal field of view when people are looking at visual targets. In this way, it 

is probably the only eye-tracker that is able to track such extreme eye-movements and maintain 

similar levels of accuracy. It is also the only eye-tracker of its kind (head-mounted with close-up 

camera) to not use the glint, which is the reflection of the infrared light on the cornea, as a 

reference point but instead, detect and use the eye corners as reference points. Another 

advantage of the eye-tracker has been its ease of use; while a large proportion of other eye-

trackers require that the camera is partially or fully calibrated and that each subject provides 

several calibration points, the REACT eye-tracker operates without camera calibration and 

required only one calibration point for each subject. Additionally, a low-cost, easy-to-assemble 

build has been maintained and the eye-tracker can be easily adapted to other applications, both 

in hardware and software. One of the adaptations that were considered to be important is the 

possible transition from 2D gaze to 3D gaze. For this particular application, 2D gaze has been 

sufficient and should it be necessary in the future, because the iris radius is calculated with great 

precision and if camera calibration data were available, 3D gaze could also be calculated. Last but 

not least, the REACT eye-tracker makes use of no models of great computational complexity and 

is thus able to perform fast. This research work was inspired by the Neuro-Linguistic 

Programming Eye-Accessing Cues model and beyond the major contribution of the REACT eye-

tracker itself, it further contributes to the academic body of knowledge in relation to Neuro-

Linguistic Programming with a critical review of past Eye-Accessing Cues model research which 

is presented in Chapter 2 and published elsewhere in a peer-reviewed publication (see 

Diamantopoulos et al., 2008). 

Movements of the eyes have fascinated academics for decades; both in sleep and waking, 

academic researchers have questioned their purpose, deconstructed their operation and 

analysed them both in terms of their physiological and psychological properties.  

Perhaps this preoccupation with the eyes may be at first explained by considering that the eyes 

are an essential part of our experience and the visual channel helps us make a large part of our 
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decisions in everyday tasks. Secondly, even though vision appears smooth to us, it is only made 

possible by the immensely complex structure and behaviour of the eyes. Most commonly 

referred to as eye-movements, movements of the eyes have been classified into at least nine 

different classes (Carpenter, 1988; Wade and Tatler, 2005); with each class of eye-movement 

serving a different purpose in everyday visual tasks, it easily becomes evident just how complex 

eyes are and why there is such a wealth of research regarding eyes and their movements. 

Of course, studying the eyes requires observation and the simplest of devices for this task is 

another pair of eyes. In his review of early “eye-movement detectors”, Carpenter (1988), states 

that “with some practice one can probably detect movements of 1° or so without difficulty” 

(Yarbus, 1967 cited by Carpenter, 1988) which Carpenter judges to be adequate for preliminary 

clinical examination but unsuitable for anything but very crude quantitative measurements. 

Wade and Tatler (2005) explain that direct viewing is the oldest method but not a particularly 

fruitful one and this is for two reasons: a) the eyes can move very fast and thus only the initial 

and final locations are noted and b) the eyes have low temporal resolution and even with intense 

concentration, it is difficult to determine how the eyes have moved. 

Thus, several man-made devices have been introduced from as early as 1901 when Dodge and 

Cline (1901 cited Carpenter, 1988) implemented a device that allowed permanent records of 

eye-movements to be made - a very primitive, yet functional, cinematic camera. It was not until 

the 1950s that video recording as we know it now was used for recording eye-movements as a 

slightly improved version of direct viewing; computer analysis of the video and the record eye-

movements was introduced relatively recently, in the 1980s (Carpenter, 1988). Video recording 

was only one amongst many other devices and methodologies such as mirrors, photoelectric 

viewing, devices that use light reflected by the cornea or attachments to the eye, electro-

oculography, electromagnetic recording, contact lenses and suction devices, etc. (Carpenter, 

1988; Yarbus, 1967). 

As happens with technology, eye-tracking has made several advancements and has matured over 

the years and high frequency eye-trackers that can track even the smallest of movements have 

been introduced. Video-based eye-trackers are now the mainstream choice and several different 

types of them are available, the two major ones being head-mounted and remote eye-trackers. 
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While eye trackers have thus changed dramatically over the last few decades, eyes are still 

mainly studied as a functional organism of vision. With the exception of studies in rapid eye-

movements during sleep, it was only recently that eyes were studied as a part of the brain and its 

function (in the waking state). This paradigm shift may have been encouraged but the 

progressive price drop of eye-trackers which rendered them more affordable to research 

establishments. Having said that, while there is a reasonable amount of studies relating eye-

movements to speech activities such as reading text or maps, very few studies have involved the 

recording and tracking of eye-movements during the performance of non-visual tasks. 

To be clear, the term non-visual tasks refers to those tasks which do not explicitly rely on vision 

to be performed. One example of such an experiment is the “Hollywood Squares” paradigm, 

where the subject is shown a grid of four squares. Sequentially, an object is placed into one of 

those four grid squares and a fact is presented auditorily. The grid is then taken away and the 

subject is asked to answer a question relevant to one of the facts previously presented. Since the 

objects displayed in the grid can be identical, any visual significance is removed and thus this 

task does not rely on vision itself at any stage; as such, it can be termed as non-visual. In this task, 

it was found (Richardson and Spivey, 2000) that eye-movements played a key role in encoding 

the information presented in the auditory modality. Similarly, the term non-visual eye-movements 

refers to eye-movements concerned with non-visual tasks. Alternatively, visual eye-movements 

may be defined as eye-movements whose purpose is to change the visual stimulus falling on the 

fovea and non-visual as those eye-movements that are a result of neuro-physiological events and 

are not associated with vision. 

Interestingly, models which make use of eye-movements but which are not related to visual tasks 

(at least not extrospective visual tasks) appeared in the last few decades. The Neuro-Linguistic 

Programming (NLP) Eye-Accessing Cues (EAC) model was introduced by Bandler and Grinder 

(1977) and suggests that the direction of non-visual eye-movements indicates the modality 

(visual, auditory, kinaesthetic) of the subjective experience a person is currently accessing. 
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Simply said, when a person1 is looking down and to their right, they are accessing a feeling 

associated with the experience they are talking about or examining internally.  

While it cannot be denied that eye-movements are hard-wired to brain function, the NLP EAC 

model was not scientifically validated by its authors. As it will be presented in detail in Chapter 2, 

several studies appeared at later dates that attempted to (dis-)prove the model but whose results 

suffered from severe methodological and experimental flaws. The use of direct viewing to record, 

select and rate the eye-movements has been the genesis of very significant limitations that will 

be discussed in full detail in Chapter 2.  

It quickly becomes apparent that studies relevant to the NLP EAC model and other such models 

would have benefited by the use of eye-tracking systems. However, selecting a suitable eye-

tracking system for this task does not prove to be as easy. This is for several reasons, the most 

important one being that eye-trackers to date were designed to track visual eye-movements. 

Whilst the classification of visual versus non-visual eye-movements is not significant in itself, 

visual eye-movements are normally bound by a much smaller field of view. By contrast, when a 

person is thinking his or her eyes will usually shift to one of the extremities of the eye socket 

(regardless of the direction). Thus, if the person was asked to consciously look in the same 

direction indicated by this shift, he or she would have turned his or her head and performed a 

much smaller eye-movement to reach the target; this behaviour is largely undocumented. What 

is, however, documented is the tendency of subjects to shift their eyes when asked to answer a 

question (not related to a visual task) and before they return to looking at the interviewer.   

Therefore, it is no surprise that eye-trackers designed to track visual eye-movements fail to track 

non-visual eye-movements of such extremities and the need for development of an eye-tracker 

that is able to track such eye-movements is introduced. The technical detail of this inadequacy as 

well as a review of recent video-based eye-trackers will be presented in Chapter 3.  

In designing and implementing this novel eye-tracker several non-functional requirements must 

be considered because of the nature of the particular application(s). For example, in the context 

of the EAC model and other models where the interviewer-subject relationship must be 
                                                             
 

1 This is a generalization offered by Bandler and Grinder (1979) for a cerebrally normally-organized right-
handed person. The EAC model is explained in more detail in Chapter 2. 
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characterized by harmony (often referred to as rapport), precision or accuracy may not be the 

key requirement for a particular research application. Instead, the invasiveness of the eye-

tracker is a key requirement, as any discomfort experienced by the subject will “break” rapport. 

Some of the aforementioned eye recording or tracking devices, especially the early ones, 

required that the subject’s eyelids are pulled open with adhesive plaster or clamps and the 

device makes contact to the eyeball in order to perform the measurements (Carpenter, 1988; 

Yarbus, 1967). Other devices, even modern ones, require that the chin is fixated using a chinrest 

or bite bar. All of these requirements would most certainly increase the subject’s discomfort 

during the experiment and thus render these eye-trackers unsuitable for such applications. 

Several factors can influence the invasiveness of an eye-tracker such as: a) whether it requires 

contact to the eyeball or other parts of the body, b) whether it restricts any type of movement 

(e.g. movement of the head) and c) if it is mounted on the head or body, how much it weighs and 

how long it takes before wearing the eye-tracker becomes uncomfortable for the user. 

The thesis presented here is concerned with the development of the Robust Eye-Accessing Cues 

Tracker (REACT) whose main requirements are to maintain a high level of accuracy while 

tracking non-visual eye-movements as well as minimize invasiveness and cost, which is always a 

concern. Finally, while initially targeted to non-visual eye-movement tracking for research 

applications such as the NLP EAC model, it is desirable that the REACT eye-tracker can be 

adapted to other eye-tracking applications and be easy to assemble.  

The REACT eye-tracker is head-mounted but very lightweight (approx. 60 grams) and is thus 

minimally invasive.  A head-mounted approach was chosen over a remote camera one as to 

minimize cost and increase the resolution of the captured images and consequently the accuracy 

viable by the eye-tracker. Moreover, a remote camera requires that the head is tracked and not 

only does that increase the computational complexity but it also decreases the ability of the eye-

tracker to track the aforementioned extreme eye-movements because of limitations imposed by 

the camera viewing angle. Several of the design choices made will be contextualized in Chapter 3, 

where a comprehensive review of recent eye-trackers is given. 

On the hardware-level, the eye-tracker works by illuminating the eye with near-infrared light 

while blocking most of the visible light spectrum with an infrared filter imposed over the camera 
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lens; the hardware design is discussed in detail in Appendix A. This produces the dark-pupil 

effect (discussed in more detail in Chapters 3 and 4) which allows for the easy detection of the 

pupil and, in a sense, offloads some of the processing to the hardware. The captured images are 

then processed in software and a set of three eye features are detected: the pupil centre and 

contour, the iris radius and the location of the eye corners. Finally, features are combined in 

order to calculate the 2D gaze angle. 

In terms of the thesis organization, Chapter 2 is a brief introduction to Neuro-Linguistic 

Programming and the Eye-Accessing Cues model specifically and a complete and detailed critical 

review of past EAC model research. At least six out of ten studies that have investigated the EAC 

model since its first introduction in 1977 (Grinder, DeLozier and Bandler, 1977) have reported 

unsupportive results. In this review of past research, these studies and their respective 

experimental methodologies are examined and the reliability of their results is assessed. The 

review is extended by presenting findings from other relevant eye-movement research while 

discussing their relevancy to and implications for the EAC model. Thus, in this chapter, it is 

argued that there is substantial ground for further research into the EAC model and identify the 

requirements that should inform this work, a significant one of which is using an eye-tracker to 

perform any further research. In doing so, the motivation of this research work will be 

established in further detail. 

After having established this motivation, a review of existing eye-tracking systems is presented 

in Chapter 3, with a view towards discussing their limitations in tracking extreme non-visual eye-

movements, the requirements of a non-visual eye-tracker as well as fundamental decisions that 

have informed the design of the REACT eye-tracker. Overall, Chapter 3 aims to give a brief 

overview of other systems regardless of their modi operandi but go into detail where relevant to 

this research work. 

Chapter 4 then explicates the algorithms involved in detecting the eye features and combining 

them to calculate the 2D gaze using a detailed description of the mathematical and computer 

vision concepts as well as several illustrations where appropriate. In Chapter 5, the performance 

of the eye-tracking hardware and the eye feature detection algorithms presented in Chapter 4 is 

evaluated and the results are discussed. 
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Chapter 6 presents a pilot study specifically designed to apply the eye-tracker in a real-world 

application which will serve as a case study for this work. The full transcript with the results 

visualised is included as Appendix B and selected parts are extracted to facilitate discussion in 

Chapter 6. 

Finally, Chapter 7 offers some concluding remarks and discussion of future work. Appendix C 

includes a list of already published journal and conference papers and a paper for submission to 

the Special Issue of the Signal, Image and Video Processing Journal entitled “Unconstrained 

Biometrics: Advances and Trends”. 
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CHAPTER 2: AN INTRODUCTION TO THE NLP EAC MODEL AND 

CRITICAL REVIEW OF PAST RESEARCH 

This chapter is a brief introduction to Neuro-Linguistic Programming (NLP) and the Eye-

Accessing Cues (EAC) model specifically. Parts of this chapter have been published in the 

proceedings of the First International NLP Research Conference held at the University of Surrey, 

UK, on 5th July 2008 (Diamantopoulos et al., 2008). For a more in-depth introduction to NLP and 

its models, the interested reader is referred to the relevant literature (Bandler and Grinder, 

1975; Grinder and Bandler, 1976; Bandler and Grinder, 1979; Dilts and DeLozier, 2000). 

Since its introduction in 1977, the EAC model has been investigated in ten studies. While six of 

these studies report unsupportive results, a clear conclusion as to the validity of the model has 

not been reached. Each one of these studies is considered in the first part of this chapter and it is 

shown that, upon careful examination, the respective experimental methodologies were based on 

assumptions informed by an incomplete or erroneous understanding of the EAC model that could 

have significantly influenced the experimental results. The reliability of the results can be further 

impacted by the absence of modern eye-tracking equipment to support the inherently complex 

task of reliably recording, selecting and rating eye-positions. Further doubt is raised as to the 

validity of the results as most studies reported statistically significant results (whether in favour 

of the model or not) and yet, the correlations reported are not in agreement across studies. 

Review efforts have been made before (Sharpley, 1987; Heap, 1988; Richardson and Spivey 

2004), where NLP is criticised as unsupported by research efforts. However, these reviews are 

drawn from the reported results of the referenced studies rather than a critical review of the 

literature with strong background knowledge of the models in question. Further, Heap (1988) 

bases his conclusions largely on results reported by masters’ dissertational theses; of his large 

list of 66 references, 36 are dissertations. Thus, the present review is restricted to peer-reviewed 

publications that concern the EAC model only.  

Further extending our survey in the second part of this chapter, recent eye-movement research 

from other fields is presented and its relevancy to and implications for the EAC model are 

discussed. Thus, it will become apparent that there is no published research that directly proves 

or disproves the EAC model and there is substantial ground for further research. Finally, in the 
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last part, drawing from the strengths and weaknesses of past research in the EAC model and the 

research findings from eye-movement and cognition research, this chapter attempts to identify 

the requirements that should inform future research. 

NEURO-LINGUISTIC PROGRAMMING AND REPRESENTATIONAL SYSTEMS 

The roots of Neuro-Linguistic Programming (NLP) descend from the work of Richard Bandler 

and John Grinder in the early 1970s. Their first seminal work (Bandler and Grinder, 1975) was 

based on their study of Virginia Satir and Fritz Perls, a family therapist and the father of Gestalt 

therapy respectively, and introduced the meta-model. The meta-model is a linguistic model 

“about the way language functions in modelling the world” (Tosey, 2006). 

Bandler and Grinder continued their work by studying Milton Erickson, a successful 

hypnotherapist, and further publishing two books about his hypnotic techniques (Bandler and 

Grinder, 1975; Grinder, DeLozier and Bandler, 1977), as the Milton model. 

Integral to NLP is the notion of representational systems; as defined by Bandler and Grinder 

(1979, p. 14) the representational system is the sensory system that a representation of a 

person’s subjective experience is held or accessed in: 

“What we noticed is that different people actually think differently, and that these differences 

correspond to the three principal senses: vision, hearing, and feeling – which we call 

kinaesthetics2. When you make initial contact with a person s/he will probably be thinking in 

one of these three main representational systems. Internally s/he will either be generating 

visual images, having feelings, or talking to themselves and hearing sounds.” 

According to Dilts and DeLozier (2000, p. 1097), “the term representational systems refers to the 

neurological mechanisms behind the five senses” and thus, five representational systems may be 

defined, each one corresponding to one of our senses: visual, auditory, kinaesthetic, olfactory and 

gustatory (VAKOG). The representational system is different to the “lead system”, which is the 

sensory system that the person uses to initiate the search for the representation of the 

                                                             
 

2 According to Dilts and DeLozier (2000), “’kinaesthetic’ is a term used in NLP to refer to feelings and body 
sensations […] it is used to encompass all types of feelings including tactile, proprioceptive and visceral”.  
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experience; for example, a search for a visual representation may be initiated through an 

auditory or kinaesthetic representation. There is also the distinction of the primary 

representational system (PRS), which is introduced and loosely defined in the original NLP texts 

(Bandler and Grinder, 1975; Grinder and Bandler, 1976; Bandler and Grinder, 1979); an 

appropriate definition is found in Dilts and DeLozier (2000, p. 1102): “in NLP, a person is said to 

have a primary representational system when that person values or uses one of his or her senses 

over the others in order to process and organise his or her experience of the world.” 

Using this notion of representational systems, they suggested that observable body language 

cues such as eye-movements, voice tone and tempo, body posture, gestures and breathing 

patterns indicate which representational system the person is currently employing (Bandler and 

Grinder, 1979). 

THE NLP EYE-ACCESSING CUES MODEL 

The NLP Eye-Accessing Cues (EAC) model was first introduced by Grinder, DeLozier and Bandler 

(1977) and further refined by Bandler and Grinder (1979). The EAC model suggests that non-

visual eye-movements (i.e. eye-movements that are not concerned with the visual pursuit of an 

object in the environment) indicate which representational system a person is currently using. 

According to the model, such eye-movement patterns are observed in all individuals regardless 

of handedness in an idiosyncratic fashion. In other words, each individual ought to display an 

eye-movement pattern correlated to the modality they are currently accessing that is consistent 

to them. An explicit generalisation is offered for normally-organised right-handed people 

(Bandler and Grinder, 1979, p. 25; Figure 1 below). It is a generalisation because the patterns are 

said to be idiosyncratic and in this sense, the pattern is generalised to normally-organised right-

handed people. 

In simple terms, assuming a normally-organised right-handed subject that conforms to the 

generalised pattern offered in Figure 1 below, the EAC predicts that when, for example, the 

subject is accessing a visual memory, s/he is going to look up and right (their left). Thus, if the 

subject was asked a question such as “do you know when tomatoes are ripe?” and an eye-

movement up and to the right is observed, that s/he accessed a visual memory in answering the 
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question, perhaps that of a ripe tomato. In practice, responses are usually much more complex 

but this crude example serves to illustrate the concept of the EAC model to the unfamiliar reader. 

 
 
FIGURE 1: A GENERALIZATION OF THE EYE-ACCESSING CUES MODEL FOR A NORMALLY-ORGANISED 

RIGHT-HANDED PERSON (BANDLER AND GRINDER, 1979). IT IS A GENERALISATION BECAUSE THE 

PATTERNS ARE SAID TO BE IDIOSYNCRATIC AND IN THIS SENSE, THE PATTERN IS GENERALISED TO 

THIS PARTICULAR GROUP OF PEOPLE. 

It can be said that the EAC model is a core component of NLP since it forms the basis of several 

advanced NLP techniques such as strategy elicitation and installation (Bandler and Grinder, 

1979) which are said to have very practical uses. For example, Malloy (1987) found that pupils 

significantly improved their spelling ability if they looked up and to the right (from the 

observer’s point of view) at the same time as visualising the word, versus visualising the word 

but looking in another direction and not visualising the word. 

A very important part of the EAC model as presented by Bandler and Grinder (1979), is the 

process which elicits the eye-movements in question. This process, termed as transderivational 

search occurs when the subject recovers the deep structure from the surface structure, as shown 

in Figure 2. 

The terms deep structure and surface structure were coined by Chomsky (1965) though a clear 

definition is elusive in both Chomsky’s and the original NLP texts. A fairly comprehensive 

explanation can be found in Dilts and DeLozier (2000). Briefly explained, the deep structure 

consists of thoughts and ideas and their linguistic expression is the surface structure; derivation 

is a series of transformations which connects the deep structure with the surface structure 

(Bandler and Grinder 1975, p. 29) and hence the transderivational search. Chomsky (1965) 

originally used these terms to describe linguistic processes but Bandler and Grinder implicitly 
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extended these notions to neurological processes related to our sensory experience (Dilts and 

DeLozier 2000). Bandler and Grinder (1975) describe three transformative processes (deletion, 

distortion and generalisation) that are reflected both in the linguistic and the mental 

representation of the person’s experience. Finally, “transderivational search is the process of 

accessing the meaning, which is equivalent to some set of images, feelings or sounds that are 

associated to that word” (Bandler and Grinder, 1979, p. 15). 

Thus, transderivational search is the process that elicits the eye-movements that the EAC model 

focuses on. Thus, the first and foremost challenge in directly examining the EAC model as the 

following studies have done, is identifying an experimental methodology for eliciting eye-

movements that follows a specific and precise definition of transderivational search. As useful as 

the above definitions may be, they require further refinement before they can be used 

experimentally. The methodology also needs to consistently achieve predictable responses in all 

instances and for all subjects. For the specific purpose of investigating the EAC model, it ought to 

recover visual, auditory, kinaesthetic and optionally olfactory and gustatory representations. 

 

FIGURE 2: ELICITATION OF EYE-MOVEMENTS IN THE EAC MODEL AND TRANSDERIVATIONAL SEARCH. 

PAST EYE-ACCESSING CUES MODEL RESEARCH 

Of the relatively few academic studies of NLP, a large percentage of them have been concerned 

with the EAC model and the closely related notion of the primary representational system (PRS) 

introduced earlier. In this section, past research literature is reviewed and critiqued, with a sole 

focus on the EAC model. References to studies of the PRS will only be made where 
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methodological decisions are relevant to the discussion; otherwise, their results are regarded as 

irrelevant for this review. 

Examination of the issues that revolve around handedness is beyond the scope of this review; the 

generic form of the model is assumed here, which, as stated earlier, suggests that patterns 

emerge in all individuals regardless of handedness. 

BRIEF OVERVIEW OF OBJECTIVES AND REPORTED RESULTS OF EAC STUDIES 

In the context of this review it will be said that a study has shown partial support for the EAC 

model if any of its results are statistically significant and consistent with the EAC model. Further, 

a study will be said to be unsupportive or to have shown no support for the model if none of its 

results are statistically significant or if none of its statistically significant results are consistent 

with the EAC model. 

Thomason et al. (1980) attempted to test the EAC model hypothesis using questions to elicit 

visual, auditory and kinaesthetic (VAK) representations; their study was unsupportive of the 

model and was criticised by Beck and Beck (1984). Elich et al. (1985) used questions to elicit 

VAK representations and attempted to correlate eye movements and verbal predicates with 

question modality (interview-style); their conclusion was unsupportive of the model. Buckner 

and Reese (1987) asked subjects to report on VAK components of pleasant thoughts and found 

partial support for the model. Another test by Baddeley and Predebon (1991) correlated eye-

movements with the corresponding verbal-report of the subjects’ subjective experience and also 

found partial support. Burke et al. (2003) tested the relation between eye-movements and 

visual-kinaesthetic-gustatory (VKG) tasks both as hypothesised by the NLP model and 

idiosyncratically and found support for the idiosyncratic hypothesis. 

Farmer et al. (1985) used recall of real stimuli and found no support for the model; a similar 

study was repeated by Wertheim et al. (1986) and found partial support. Dooley and Farmer 

(1988) repeated the experiment of Farmer et al. (1985) with aphasic subjects and found partial 

support. 

Cheney et al. (1982) tested the relationship between eye-movements and reported imagery with 

the use of a questionnaire on vividness (Sheehan 1967); the results were unsupportive of the 
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model. A questionnaire was also used by Poffel and Cross (1985) with unsupportive results but it 

is unclear if the questionnaire was read out by an interviewer or completed by the subjects. 

In an interview-style study (Ellickson 1983), the interviewers attempted to match the subjects’ 

representational system, as determined in real-time by their eye-movements, through verbal 

predicates and tested the effect of predicate matching on perceived counsellor empathy. 

Falzett (1981) used eye-movements to assess the PRS and determine the outcome of matching it 

through verbal predicates in counselling. Gumm et al. (1982) attempted to examine the 

agreement in the determination of the PRS using eye-movements, verbal predicates and self-

report. Sandhu (1991) tested whether the PRS can be reliably determined from eye-movements 

by comparing its assessment from eye-movements, verbal predicates and self-report; he found 

no support for the EAC model. 

Table 1 below is a summary of all the past research studies relevant to the EAC model. 

EYE-MOVEMENT ELICITATION 

Unknown questions were used by Thomason et al. (1980) and Poffel and Cross (1985); Falzett 

(1981) used questions from an unpublished doctoral thesis that are not reproduced in his 

publication. Gumm et al. (1982) used twenty questions to provide the subject with a variety of 

“cognitive tasks”. It is unknown what exactly is meant by “cognitive tasks” in this case; it is likely 

that the tasks were unrelated to direct elicitation of sensory representations as other research of 

the time was concerned with generic mental tasks (e.g. Ehrlichman et al., 1974). Ellickson (1983) 

employed six “stimulus cues” during interviews that were apparently designed to elicit eye 

movements and neither the design criteria nor the stimulus cues are included. 

Buckner and Reese (1987) asked their subjects to “think in silence of a single pleasant thought or 

memory” and after ten seconds, the interviewer asked the subject to report any VAK 

components; once again, the validity of this methodology in eliciting eye-movements as 

described above was not examined by Buckner and Reese (1987).  

Eye-movement elicitation methodology was only sparsely informed by other research; the only 

instances are the papers by Cheney et al. (1982) and Elich et al. (1985) that utilised the 

questionnaire on mental imagery developed by Sheehan (1967). However, its relevance and 
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validity in the investigation of the EAC model was not discussed nor tested; even if the 

questionnaire is successful in eliciting eye-movements, it is not appropriate for this purpose as it 

explores the different properties of objects within a single representation (e.g. the colour of the 

dishes and the food on the breakfast table). 

Sandhu (1991) was the first to note and give weight to the importance of “stressed recalls” and 

proposes that the subject’s eyes will shift in potentially meaningful ways only when they “think 

hard” to answer the question. Despite this observation, the questions taken from the Sandhu PRS 

inventory are neither reproduced nor published in a journal publication elsewhere. Further, the 

inventory sample provided is arithmetic and not relevant to any one sensory modality. 

Regardless of the particular method, the examples above highlight the ad-hoc selection of the 

eye-movement elicitation methodology and the implicit assumption that the respective 

methodology is equivalent of the transderivational search and consequently examines the 

desired eye-movements; no formal pilot studies were conducted and minimal emphasis was 

given on this pivotal aspect. 

Baddeley and Predebon (1991) provided the full inventory of questions but there was another 

fundamental flaw. Duke (1968) found that a “complex” question will elicit a series of eye-

movements. However, the more complex the question, the more difficult it is to isolate the 

cognitive process at work. Thus, questions that are too simple may not elicit any eye-movements 

and questions that are too complex may elicit too many eye-movements and/or cognitive 

processes for any useful distinctions to be made. More specifically, in the case of such complex 

questions, there is no guarantee that the representational system accessed by the subject is the 

same as intended by the author of the question. For example in a question that appears in 

Baddeley and Predebon (1991), “What colour are the walls in your bathroom?”, which is 

reported as “visually remembered”, the subject could retrieve a memory of their bathroom, 

kinaesthetically, e.g. by remembering the feeling of sinking into warm bath water (also reported 

by Beck and Beck, 1984). As mentioned earlier, in the EAC model, this is termed as the “lead 

system” (Bandler and Grinder, 1979, p. 28). 

 

 



Table 1: Summary of past EAC research studies examined in this review. A study has shown partial support for the EAC model if any 
of its results are statistically significant and consistent with the EAC model. Further, a study is said to be unsupportive or to have 
shown no support for the model if none of its results are statistically significant or if none of its statistically significant results are 
consistent with the EAC model. Studies that related to the PRS are marked as “not relevant”. 
 

Publication  Purpose of study 
Reported 
Results  

Thomason et al. (1980)  Questions to elicit VAK representations; to correlate EMs with question type  Unsupportive  

Falzett (1981)  Determine the effect of PRS as determined by EMs; questions to elicit EMs  Not relevant  

Cheney et al. (1982)  
Determine the correlation of EMs and reported imagery; Sheehan/Betts’ 
questionnaire on imagery to elicit EMs  

Unsupportive  

Gumm et al. (1982)  
Determine the effect of predicate of PRS based on EMs, predicates and self-
report; questions used to elicit EMs  

Not relevant  

Dorn et al. (1983)  To assess the reliability of assessing the PRS through EMs  Not relevant  

Ellickson (1983)  
Determine the effect of real-time verbal predicate matching as determined 
by EMs  

Not relevant  

Elich et al. (1985)  
Questions to elicit VAK representations; to correlate EMs and verbal 
predicates with question type  

Unsupportive  

Farmer et al. (1985)  
Recall of real stimuli to elicit VAK representations; to correlate EMs with 
stimuli type  

Unsupportive  

Poffel and Cross (1985)  Questions to elicit VAK representations; to correlate EMs with question type  Unsupportive  

Wertheim et al. (1986)  
Recall of real stimuli to elicit VAK representations; to correlate EMs with 
stimuli type  

Partial support  

Buckner and Reese 
(1987)  

To correlate the self-report of VAK components of subjective experience and 
recorded EMs  

Partial support  

Dooley and Farmer 
(1988)  

Like Farmer et al. (1985) but with aphasic subjects  Partial support  

Baddeley and Predebon 
(1991)  

Questions to elicit VAK representations; to correlate EMs with question type 
and self-report  

Unsupportive  

Sandhu (1991)  Determine the agreement of PRS based on EMs, predicates and self-report  Not relevant  

Burke et al. (2003)  Questions to elicit VKG representations; to correlate EMs to question type  
Support for 
idiosyncratic 
case  

 



VALIDATION OF THE SUBJECT’S COGNITION  

This leads us to another inherent challenge in the direct examination of the EAC model: 

validation of the subject’s cognition. While the representational system access required to 

answer a particular question can be linguistically pre-supposed (i.e. the access of a visual 

representation is required to recover purely visual information such as the colour of an object), 

how can one be truly certain that the subject has accessed the pre-supposed representational 

system to recover the information and nothing else without the use of neuroimaging technology 

such as functional magnetic resonance imaging (fMRI)? fMRI is a device which allows scientists 

to determine which part of the brain is active at any given point in time. 

Farmer et al. (1985) provided subjects with real stimuli (pictures, tape-recorded sounds and 

textural objects) that they had to experience and later recall, presumably to guarantee that the 

representational system the subject used is the one intended. However, this is no different from 

pre-supposing that when the subject is asked to report on visual information, it is necessary for 

them to perform a visual access; the need for validation is still warranted. Take a textural object 

for example, such as a rock: even if it is supposed that the subject was blindfolded (no such 

mention by the authors), it is not necessary that the subject encoded only the 

kinaesthetic/textural aspect of the rock. Alternatively, the subject may form a mental visual 

image of what the rock may look like based on the kinaesthetic input – the “feel” of the rock. 

Thus, this methodology has failed to warrant the type of representational system accessed or to 

further involve the phenomenological, subjective experience of the subject. The same approach is 

taken by Wertheim et al. (1986) and is thus subject to the same criticism. 

In an attempt to deal with this fundamental issue of validating the subject’s cognition, some 

researchers collected accounts of the subject’s subjective experience (Cheney et al., 1982; Elich et 

al., 1985; Baddeley and Predebon, 1991); however, the methodology was not informed by 

psycho-phenomenology literature (see Mathison and Tosey, 2008a; Mathison and Tosey, 2008b). 

For example, the method of introspective inquiry suggested by Beck and Beck (1984) in their 

critique of a related study (Thomason et al., 1980) is informed only by NLP literature. Imagery 

and introspection is an area of human psychology that has a long history of controversy (see e.g. 

Horowitz, 1983) simply because of its own very nature. The information is retrieved from a 

subjective source, the person, and the question of the reliability of any gained information is very 
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quickly raised (Mathison, 2006). NLP aims to study people’s subjective experience and might 

thus be expected to have an interest in the methods of psycho-phenomenology; if NLP is to be 

explored academically and any potential links to be established, it is imperative that any 

enquiries into NLP are informed by established methodologies such as psycho-phenomenology. 

RECORDING, RATING AND SELECTING EYE-MOVEMENTS 

One cannot dismiss the inherent difficulty in recording and rating the eye-movements without an 

appropriate device such as an eye-tracker. To date, two different methodologies have been used: 

a) real-time scoring by human observers; or b) video recording the eye-movements and scoring 

them later. Especially in the first case, the question of who does the rating is especially relevant; 

the implicit assumption has been that eye-movements are easily discernable by (un)trained 

human observers in real-time or with the use of video-recording equipment. 

The study of eye-movements has a long history and so does their measurement (Carpenter, 

1988; Yarbus, 1967). The author hypothesises that direct-viewing was used in NLP studies 

because the EAC model is taught to be useful in real-time human interaction where the 

practitioner observes the eye-movements without technological aids. The use of inexperienced 

graduate student raters is advocated by Sharpley (1987) as traditional and a good measure of a 

procedure’s readiness and robustness. This argument could only be valid if the model’s 

suitability for adoption by untrained individuals was assessed and not its validity. The only 

available information regarding the accuracy and reliability of direct-viewing of eye-movements 

is that movements of less than 1° rotation (0.2mm movement of the retina) are not discernable 

by the naked eye (Yarbus, 1967; it is unclear whether this refers to a trained or untrained 

individual) and the question of sufficient reliability for the purposes of a scientific study quickly 

arises.  

Indeed, several studies make no reference to the experience of the raters (Gumm et al., 1982; 

Poffel and Cross, 1985; Farmer et al., 1985; Wertheim et al., 1986; Burke et al., 2003), while 

others have regarded the use of naive (Thomason et al., 1980; Cheney et al., 1982; Baddeley and 

Predebon, 1991) or briefly trained raters (Falzett, 1981; Ellickson, 1983; Elich et al., 1985; 

Sandhu, 1991) as acceptable. NLP practitioners were used in one instance (Buckner and Reese 

1987); again, this does not guarantee rating accuracy or reliability. 
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The case of some studies is strengthened because they used video-recording equipment that 

allows the rater to review eye-movements (Gumm et al., 1982; Cheney et al., 1982; Elich et al., 

1985; Poffel and Cross, 1985; Wertheim et al., 1986; Sandhu, 1991; Baddeley and Predebon, 

1991; Burke et al., 2003). In the methods used by most of these authors, the subject was forced to 

look at the camera thus restricting their head and body movement (Cheney et al., 1982). It is 

questionable whether all relevant eye-movements are discernable both because of relevant 

training and obscuring of the eye by blinks or head tilts and so on. The question of precision and 

reliability of rating has not been raised before other than inter-rater reliability tests which only 

certify a statistical agreement between raters and have no account for their individual abilities or 

other limitations imposed. In order to eliminate as many variables as possible, a recording and 

rating methodology whose error is known has to be used. In the methods described, no such 

precision/reliability tests have been performed. The question of what eye-movements occur 

during blinks and how they are relevant to the EAC model has not been considered in the 

literature other than by Buckner and Reese (1987) and Baddeley and Predebon (1991). 

Even if an assumption that all relevant eye-movements can be precisely and reliably captured is 

made, another potent issue is which eye-movement to take into account. Firstly, the number of 

eye-movements in response to a stimulus cannot be predicted; to our knowledge there are no 

studies that show any statistically significant results in this respect. Therefore, by fixing the 

number of analysed eye-movements, bias is introduced in the selection process. 

It is unknown how Thomason et al. (1980) selected the relevant eye-movement(s). In the study 

by Elich et al. (1985, p. 622), the authors specify that “eye-movements were recorded from the 

moment of asking the image-evoking question up through subject’s description of the images 

experienced in response to the question”; however, the process of selecting the eye-movement 

judged as relevant to the question is also unknown. Similarly, Poffel and Cross (1985) provide no 

information on the matter. 

In a study related to the PRS, Falzett (1981) selected the eye-movement prior to the 

acknowledgement of the subject that an internal response has been reached. This process was 

replicated by Farmer et al. (1985). Gumm et al. (1982) and Sandhu (1991) assessed the first eye-

movement following the end of each question, while Wertheim et al. (1986) recorded the first 

eye-movement after the subject was asked to recall the stimuli as well as the last eye-movement 
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before the subject’s acknowledgement of their internal response. Recording the first eye-

movement after the end of the question was earlier done by Cheney et al. (1982); in their study, 

multiple eye-movements were regarded as a separate event and selection was not attempted. 

Ellickson (1983) made a distinction between occurrences of one and two eye-movements; in the 

latter case, the second eye-movement was selected. There are several flaws these studies have in 

common. 

 There is an implicit assumption that eye-movements (or at least the relevant one) occur 

after the end of the question, which is not necessarily true and this is supported by 

Cheney et al. (1982) who pointed out that often the subject’s eyes will shift before the 

end of the question. 

 Bandler and Grinder (1979) also suggest that some eye-movements may reflect a speech 

preparation, rehearsal, or translation process or the first eye-movement may reflect the 

“lead” system, i.e. the representational system that the subject uses to bring the 

representation into consciousness; in the example offered earlier, the kinaesthetic system 

(the feeling of sinking into warm bath water) would be the lead system. 

 In the case of asking the subject to acknowledge reaching an internal response before 

verbalising, it is possible that the last eye-movement corresponds to a process related to 

this acknowledgement.  

Buckner and Reese (1987) recorded whether any eye-movement that matched the expected 

modality was present when asking their subjects if they were aware of VAK components in their 

thought. While the EAC model does not define a specific selection process, it is questionable if 

this methodology can yield objective results. 

Baddeley and Predebon (1991) recorded a series of eye-movements in each part of their study; 

the two models they used are shown diagrammatically in Figure 3 together with the other 

approaches. This is an improvement over previous studies in that it attempts to record multiple 

eye-movements. However, there are three fundamentally problematic assumptions that cannot 

be predictably satisfied. Those are: 

1. All subjects will always perform the same amount of eye-movements (no selection 

criteria are discussed). 



27 
 

2. The representational system targeted by the question will occur on the same eye-

movement instance for all subjects. In reality, variations of cognitive and physiological 

responses can be expected in different people answering the same question. 

3. Eye-movements have a one-to-one correspondence to internal representations or 

processes. In reality, one cannot be certain what these processes are; also pointed out by 

Cheney et al. (1982).  

Recently, Burke et al. (2003) video recorded and scored all eye-movements and performed 

pattern analysis on sets of two, three, and more than three eye-movements. Cheney et al. (1982) 

reported that eye-movements will often transpire before the interviewer has reached the end of 

the question as early as 1982 and it is therefore surprising that no studies up to Burke et al. 

(2003) take this into account. 

 

FIGURE 3: DIFFERENT MODELS OF EYE-MOVEMENT SELECTION FOUND IN LITERATURE. THE BLUE 

ARROWS INDICATE WHERE EYE-MOVEMENT MEASUREMENTS WERE MADE FOR EACH MODEL. THE 

GREY ARROWS DESIGNATE OTHER POSSIBLE INSTANCES OF THE CHOSEN EYE-MOVEMENT. DOTS ARE 

USED TO DESIGNATE AN INTERVAL WITHIN WHICH THE EYE-MOVEMENTS CAN OCCUR. 
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As mentioned earlier, the EAC model predicts that eye-movement patterns are observed in all 

individuals regardless of handedness and a generalisation is offered for normally-organised 

right-handed people (Bandler and Grinder 1979, p. 25; Figure 1). Given this is an explicit 

generalisation, it will not hold true for all right-handed people and it is thus not sufficient to 

screen for right-handed people. In order to investigate these claims it is necessary to test 

whether idiosyncratic patterns exist within any given individual. This idiosyncratic case was only 

tested by Burke et al. (2003) who had partially supportive results, while all the other studies 

used this generalised form in order to interpret the selected eye-movements. 

INTERPRETING AND ANALYSING EYE-MOVEMENT DATA 

Another interesting aspect of the studies that has never been commented on is the statistical 

variance of the results reported. Cheney et al. (1982) report no eye-movement 32% of the time 

while 18.9% of the responses were multiple eye-movements and not analysed. In the same study, 

eye-movements to the left and up and left were only 14.75% and 10.3% respectively. Poffel and 

Cross (1985) reported no eye-movement 50% of the time – vastly different results to those of 

Thomason et al. (1980) despite the similarity in methodologies. 

Farmer et al. (1985) reported 49.6% baseline eye-movements with upwards movements coming 

second at 37% – a significant difference, especially in light of the roughly equal results reported 

on all VAK components by Thomason et al. (1980). Wertheim et al. (1986) did not include 

numerical data but report a majority of auditory responses regardless of question type. Dooley 

and Farmer (1988) and Farmer et al. (1985) report 44% stares for their aphasic subjects and 

40% auditory for their control subjects. Finally, Baddeley and Predebon (1991) report 40% and 

41.9% leftwards eye-movements in study one and two respectively. 

The aforementioned incongruences observed in the results of the studies can lead to two 

possible logical conclusions: 1) eye-movements are random; or 2) there are variables that have 

not been considered (or perhaps discovered) and controlled for. 

So, are eye-movements random? From the nine studies that performed statistical analysis on 

eye-movements and question/task modality, only three report no statistical significance (Cheney 

et al., 1982; Elich, 1984; Sandhu, 1991) whereas the remaining six reported some statistical 

significance even though they were unsupportive of the EAC model (Thomason et al., 1980; 
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Farmer et al., 1985; Wertheim et al., 1986; Dooley and Farmer, 1988; Baddeley and Predebon, 

1991; Burke et al., 2003); this would suggest that eye-movements are indeed not random. 

Further, if the relationship was simple (e.g. baseline movements) the results would be more 

coherent. Later in this review, research from other fields that suggest that eye-movements are 

linked to internal processing will be considered. 

From the aforementioned data, a trend is visible in some studies where a large sum of the elicited 

eye-movements has been stares or baseline eye-movements. It is surprising that this trend has 

not raised any suspicion about the validity of the questioning methodology in the past since the 

interpretation of both stares and baseline eye-movements is ambiguous. The term stares refers 

to the central position of the eye within the eye-socket when the eyes are not focused. According 

to the EAC model this position is associated with visual access. However, stares can also be 

regarded as failure to activate the transderivational search and it is unclear how to differentiate 

between that and visual access (also reported by Ehrlichman et al., 1974; Ehrlichman and 

Weinberger, 1978). This ambiguity is also true of baseline eye-movements; as per the EAC model, 

baseline eye-movements are associated with auditory eidetic access (auditory constructed 

sounds or words) but they can also be connected to an internal rehearsal or speech preparation 

process (Bandler and Grinder, 1979, p. 18). Once again, since there is no available distinction 

between the two cases, it is theoretically consistent with the EAC model that consistent 

elicitation of baseline eye-movements can also be regarded as a failure of the elicitation process 

to activate the “transderivational search”. 

Given the statistical variance of the recorded data of one to seven eye-movements, it is surprising 

that no past research has performed a comprehensive frequency analysis on the number of eye-

movements that occur in response to questions or introspection and their temporal location. It is 

suggested here that if a predictable relationship exists between eye-movements and internal 

representations and if this relationship is to be discovered, it is necessary to record and analyse 

all eye-movements that subjects make (also pointed out by Ehrlichman and Weinberger 1978). 

Recent developments in eye-tracking technology may allow this to be done reliably and without 

the immense effort involved in manual rating; depending on the intrusiveness of particular 

system used, there can be minimal interference with subject-experimenter rapport. 

 



30 
 

EYE-MOVEMENT RESEARCH RELEVANT TO THE EAC MODEL 

A very important finding for the EAC model by Christman et al. (2003) showed that the retrieval 

of episodic memories is selectively enhanced when it is preceded by saccadic eye-movements 

(fast movement of the eyes towards or away from an object, or without a visual stimulus) and 

not when preceded by pursuit eye-movements (eye-movements used to smoothly follow a 

moving object). Non-visual eye-movements such as those referred to by the EAC model fall under 

the category of saccadic eye-movements and thus an important link between eye-movements 

and memory retrieval is hereby established. 

In a different area of eye-movement research and after a series of experiments (Brandt and Stark, 

1997; Demarais and Cohen, 1998; Spivey and Geng, 2001), Richardson and Spivey (2000) 

adopted a “Hollywood Squares” paradigm where subjects were presented with a two-by-two grid 

of squares, each filled with an object and associated with an auditorily-presented semantic 

property. Consistent with earlier accounts, they found that when the objects were removed from 

the grid and the subjects were questioned about one of the properties, subjects tended to look at 

the blank region of space where the property had been previously presented. This spatial 

indexing effect is related to the eye fixation and not attentional focus, is independent to fixations 

on separate locations in absolute space and even though spatial location is irrelevant to the task, 

it is consistently and automatically encoded. 

The spatial indexing phenomenon agrees with neurological research in imagery and perception 

where it has been shown that there is a large overlap of brain area (re-)activation between 

perception and imagery (Kosslyn, 2005; Buckner and Wheeler, 2001; Handy et al., 2004). Not 

only is there similar brain activation but the eye-movements are re-enacted and they play a 

functional role (Laeng and Teodorescu, 2002). 

The NLP creators developed the EAC model based purely on their own observations of people’s 

behaviour and it may be tempting to attribute these observations on spatial indexing but on 

closer inspection, such a conclusion would be erroneous. It would mean that every time a 

representation is accessed, our eyes move in the same direction as they did when this 

representation was encoded. In all probability, an illogical conclusion if we consider that most 

information in our lives is presented to us within a central attention window of a limited viewing 

range while the eye-movements associated with the retrieval of internal representations are 
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relatively spatially extreme and most probably outside the limits of this window. Also, the study 

conducted was concerned with very short-term recall – what about longer-term accesses? Of 

course, neither argument could make a strong stance without collecting further evidence. 

EYE-MOVEMENTS IN DYADIC INTERACTIONS 

The contexts where the EAC model is supposed to hold true are unclear; no explicit claims have 

been made by Bandler and Grinder (1979) and the original context is that of dyadic “natural” 

human interaction. It is possible that this is the only context where it holds true and only when a 

certain condition is met: rapport. The working assumption so far has been that the relationship 

between the researcher and the subject is not important and several studies have not 

reproduced this context (Thomason et al., 1980; Gumm et al., 1982; Burke et al., 2003). Further, 

some studies (Cheney et al., 1982; Elich et al., 1985; Baddeley and Predebon, 1991) required the 

subjects to interact with a light switch to enable blind rating of the eye-movements, which may 

have influenced the results by creating an artificial environment, thus jeopardising the rapport 

condition. 

There are several important findings regarding eye-movements during dyadic interactions that 

are relevant to the EAC model: 

 If a person is looking upwards and sideways and there is no apparent object to which 

their gaze is directed, 4-year-old children can infer the person is thinking (Baron-Cohen 

and Cross, 1992). 

 There is some evidence that the relationship between the experimenter and subject 

affects the rate of the eye-movements (increased rate of eye-movements with high-

anxiety questions, MacDonald and Hiscock, 1985). No change in direction was observed 

but the experiment controlled only for change in lateral direction. 

 No conclusion may be made about whether the position of the experimenter (face-to-face 

versus behind subject) affects eye-movements (Kinsbourne, 1972; Ehrlichman and 

Weinberger, 1978) but it is certain that they occur even when no other person is present 

(Ehrlichman and Barrett, 1983; Kocel et al., 1972). 

 According to McCarthy et al. (2006) eye-movements in dyadic interactions are also 

culturally-biased. In a complex-question task, all three groups of Trinidadians, Canadians 
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and Japanese subjects made less than 50% eye-contact and the direction of eye-

movements was mainly (81%) up for the Trinidadian and Canadian subjects versus 75% 

down for the Japanese subjects. This was attributed to the different connotations of 

looking up or down during conversation for each group though there is no solid ground 

for this claim. 

It was also recently explicitly shown that verbal questions will elicit eye-movements when there 

is nothing to look at (Ehrlichman et al., 2007); an interference theory that was originally put 

forward has been refuted. The remaining theory is that people naturally shift eyes rather than 

focus them and they suppress those eye-movements when there are useful visual cues in the 

environment such as the face of another person (Ehrlichman, 1981). In this view, eye-

movements could be regarded as an integral part of thought and brain activity. 

Another question that several studies have attempted to answer before is whether eye-

movements are reliably consistent over time but the results are mixed and hence inconclusive. 

Templer et al. (1972) found them not to be reliable, in contrast to Bakan and Strayer (1973). 

Dorn et al. (1983) tested the same subjects with the same questions after a week and found that 

the eye-movements were different. However, during debriefing some subjects reported that they 

had recalled their previous response to each question instead of generating a new one. 

Returning to the issue of question complexity examined earlier, several studies have made a 

distinction between questions that elicit eye-movements and questions that do not; reflective 

versus factual questions (Day, 1964; Duke, 1968), reflective versus over-learned (Ehrlichman et 

al., 1974) and complex processing versus over-learned, immediately available and syntactically 

simple (Ehrlichman and Weinberger, 1978). 

DISCUSSION 

In this review, the deficiencies of past EAC research have been identified and requirements that 

should inform future EAC research have been established. 

The pattern that has emerged from reviewing past EAC model research is that working 

assumptions have not been identified fully. Granted, this is a difficult task for such a complex 

investigation and it is a privilege to be able to learn from past research. A fine example of this is 
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the use of the term representational system. In the original NLP texts (Grinder and Bandler, 1976) 

this term was defined very loosely and it was not until recently that definitions more suitable for 

academic research have appeared (Dilts and DeLozier, 2000). Linguistically speaking, people’s 

ability to answer questions about the world such as “what colour is the sky?” presupposes that 

they are able to access those representations. Even though this presupposition may be sufficient 

for empirical and experimental research, it is customary to clearly state what definition of the 

term is assumed; this has been lacking and the definition has been taken for granted. 

A new set of working assumptions is proposed (see Table 2) that with further research should 

lead to a more rigorous experimental methodology. 

To begin, it is important to establish criteria for the eye-movement elicitation methodology. An 

attempt was made by Baddeley and Predebon (1991) to import the criteria from lateral eye-

movement research but no discussion of its applicability or relevance was made. Certainly, a 

formalised classification of question complexity is required (e.g. reflective versus over-learned) 

or at least the responses have to be controlled; either by adopting a question model that 

continually refines the requested detail or with a consistency test of the eye-movement 

responses. Similarly, Ehrlichman and Weinberger (1978) suggested a test of which questions 

consistently elicit left or right eye-movements, and which do not. Alternatively, an established 

means of exploring the phenomenology of the subject’s experience can be used (e.g. Varela and 

Shear, 1999). 

It is also vital to record all eye-movements present because there is no way to predict the 

number of eye-movements without extensive question analysis. In order for the measurements 

to be reliable, human rating of the eye-movements should be avoided and a recording method 

whose accuracy and reliability is known ought to be used. Further, given the possibility that non-

visual eye-movements are coupled during conversation (like visual eye-movements are, see 

Richardson and Dale, 2005), ideally both the eye-movements of the subject and the experimenter 

need to be recorded. 

Last, but not least, subjects with a similar cultural background and same native tongue need to be 

selected to eliminate cultural bias and because internal translation processes would interfere 

with the results, respectively. 



TABLE 2: OLD AND PROPOSED SET OF ASSUMPTIONS OF EAC MODEL RESEARCH. 

Aspect  Old Assumption  Proposed Assumption  

Questions  

Response elicits transderivational search  Subject-specific  
Response elicits linguistically presupposed rep. 
system  

Eliciting the presupposed rep. system requires 
refinement *  

One-step; isolation of cognitive processes 
assumed  

Multi-step; isolation of cognitive processes by 
refinement *  

Rating  Performed by raters of variable training  
Performed with machine vision; automatic or 
semi-automatic  

Selection  Specific eye-movements are relevant  All eye-movements are relevant  

Pattern  Occurs across questions and/or subjects  
Occurs idiosyncratically; secondary generic 
patterns may emerge  

Eye-movements  

Constant number  Variable number  

Stares = visual access 
Baseline = auditory access  

Stares = visual access or no transderivational 
search *  
Baseline = auditory access or no 
transderivational search *  

All eye-movements in response to a question 
are non-visual  

Eye-movements can be distinguished between 
visual and non-visual *  

Relationship  Has no or minimal effect  Rapport is a necessary condition  
Cultural background  Has no or minimal effect  Has potentially significant effect  

Native language  Has no effect  Has potentially significant effect  

Physiological 
feedback  

Eye-movements only  
Eye-movements and other physiological 
responses *  

* requires further research before a methodology is developed  
 



SUMMARY AND FUTURE DIRECTIONS 

Thirty years after its introduction, NLP remains a largely unexplored field within academia and 

the EAC model was the main target of evaluation in the past. Even though the results of these 

evaluation efforts have not been consistent and thus conclusions can only be tentative, they have 

been used as evidence to discredit the model itself and NLP as a whole. 

Perhaps the EAC model has been seen as a simplistic part of NLP but the inherent complexity of 

the EAC model and its study should be evident from the critique of past EAC model research that 

has taken place in this chapter. Past research has implicitly adopted incomplete and erroneous 

assumptions and therefore the EAC model requires further research attention. 

More importantly, if the EAC model is considered a simplistic part of NLP and yet no definite 

conclusions can be drawn from this relatively large set of research, this is a clear indicator of how 

much more complex it would be to investigate larger and more complex NLP techniques or 

models. If academic value is to be extracted from NLP, more weight would need to be given by 

future research. 

Though research in the EAC model has stopped for several years, it may now be a good time to 

continue these efforts, as the link between eye-movements and neurology is clearer and eye-

tracking technology suitable for this purpose is going to presented in this thesis. As discussed, 

saccadic eye-movements were recently shown to aid the retrieval of episodic memories and even 

though (at least without further investigation) spatial indexing cannot account for the EAC model 

it is a positive indicator that eye-movements are related to the process of encoding information. 

Along with research in dyadic interactions that is now available, these advances justify the 

investigation of an ad-hoc model such as the EAC model which is still “current” in NLP circles. 

What is especially interesting is that a theory similar to the EAC model has emerged fairly 

recently from an academic field unrelated to NLP (Ehrlichman et al., 2007); it is based on a buffer 

model which is used to hold representations. Eye-movements are associated with retrieval and 

fixations are associated with maintenance of the information in the buffer. 

It is proposed that the EAC model is worthy of further research with an experimental 

methodology that incorporates the assumptions and requirements presented here. A significant 



36 
 

part of this future direction is the use of eye-tracking technology to detect, track and classify eye-

movements. As current state-of-the-art eye-trackers are still limited in the range of eye-

movements they can track because they are designed in with the working assumption of the 

subject looking at a screen or an object in the environment, a novel eye-tracker that is able to 

successfully track non-visual eye-movements is required. The design and implementation of such 

an eye-tracker has been the main objective of this thesis. Thus, Chapter 3 reviews current eye-

tracking systems with respect to the requirements of such research and sets the background for 

the implementation of the Robust Eye-Accessing Cues Tracker (REACT), introduced in Chapter 4. 
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CHAPTER 3: REVIEW OF EYE-TRACKING SYSTEMS 

In Chapter 2, the benefit of using an eye-tracking system for research relevant to the EAC model 

was established. In fact, the lack of a computerised eye-movement rating system has been a 

major flaw in previous studies. Direct viewing methods, even when performed by trained 

individuals, are error-prone and make objectivity seem impossible to achieve. 

While there are several eye-tracking systems with good performance (both commercial and in 

academia), they are fundamentally designed for applications where the subject is looking at an 

object or a screen in the external world. Briefly mentioned in earlier chapters and reiterated 

here, such visual eye-movements are restricted by a relatively narrow field of view; Hansen and 

Ji (2010) report that fixations normally occur within two to five (2-5) degrees of central vision. 

Further, as it was found empirically, people prefer to turn their heads in the general direction of 

the object or screen and then shift their eyes a small amount to put the visual target in focus. A 

trivial example of this behaviour is television; if you were sitting in front of your computer 

reading this thesis and there was a television screen several degrees up and to one side, you 

would most likely turn your head towards the screen every time it gathered your interest and 

then shift your eyes to focus on any objects displayed on the television screen.  

In contrast, non-visual eye-movements are usually characterized by a shift to an extreme location 

within the eye socket and the fundamental assumptions that current eye-tracking systems have 

been designed with render them incapable of tracking these eye-movements. For example, the 

vast majority of eye-trackers use infrared light and a glint-centred coordinate system (e.g. Ohno 

et al., 2002; Li et al., 2005); the glint is the reflection of the cornea and appears as a very bright 

spot. When the glint falls onto the sclera, which is also white, it can be very difficult to find its 

position. Thus, such eye-trackers operate on the implicit or explicit assumption that the glint will 

always fall within the iris or pupil, which would not hold true for extreme eye-movements. 

Before going any further it is important to define what “extreme” means in the context of eye-

movements and further explicitly list the requirements of a non-visual eye-tracker compared to a 

visual one.  

Hansen and Ji (2010), cite the work of Tweed and Vilis (1990) when stating that “eye positions 

are restricted to a subset of anatomically possible positions described by Listing’s and Donder’s 
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laws”. Indeed, in their study which is not specific to the oculomotor range but concerns the 

geometric relations of eye position and velocity vectors during saccades with respect to Listing’s 

law, Tweed and Vilis (1990) briefly mention that the oculomotor range of their measurements is 

±40° both horizontally and vertically. Other researchers (Guitton and Volle, 1987) however 

report that the human oculomotor range is ±55°, a considerably larger range. It is not uncommon 

to come across eye-movement studies which were performed over a range as large as ±70° 

(Collewijn et al., 1988) and ±80° (Guitton and Volle, 1987) though such research also aims to test 

objectives that require eye-movements beyond the maximum human oculomotor range. In this 

research work, ±55° of angular range will be considered the maximum possible range. Further, 

the label of “extreme eye-movements” is given to those eye-movements that extend beyond the 

operational tracking range of existing eye-trackers, which is equal to or less than ±30° (e.g. SR 

Research, 2009). 

Thus, the requirement that separates visual eye-movement trackers from non-visual eye-

movement trackers is its ability to maintain similar accuracy across the complete range of eye-

movements as defined by the aforementioned oculomotor range of ±55°. 

This chapter will walk through the eye-tracking literature from the past decade or so in order to 

give an overview of currently available systems and their suitability for this application. In doing 

so, it will also form the basis for several fundamental decisions that have informed the design of 

the Robust Eye-Accessing Cues Tracker (REACT).  

A recent review by Hansen and Ji (2010) is a comprehensive and fairly detailed source of 

technical information on video-based eye-tracking systems. It categorizes research work based 

on the particular area of focus: 

a) Eye localization in the image that is concerned with:  

i. detecting the existence of eyes 

ii. interpreting eye positions in the image 

iii. tracking the detected eyes from frame to frame 

b) Gaze estimation which is concerned with estimating where the person is looking in 2D or 

3D or determining the 3D line of sight. 
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While this categorization is appropriate for the latter review, this review will categorise eye-

trackers in a different fashion, one that facilitates the discussion of several design choices made 

with the applications requirements in mind: 

 Remote versus head-mounted. Remote eye-trackers where one or more cameras are 

placed in a remote location and head-mounted eye-trackers which are directly mounted 

on the subject’s head usually through a glasses-like frame or a helmet. 

 Light source(s). The light source used in each eye-tracker dictates the image properties 

and to a large degree formulates the computer vision problem that is required to be 

solved. As such, the eye-trackers will be classed based on whether they use natural 

illumination (passive) or (near-) infrared illumination (active). In the case of active 

illumination several light sources may be used, each one of which will result in 

corresponding glint, which is the reflection of the light source on the cornea. The glint is a 

“nickname” for the first Purkinje image, as shown in Figure 4. 

 Number of cameras. As this review focused on video-based eye-trackers only, it is 

important to include the number of cameras each system uses as more than one camera 

is often used. 

 Gaze estimation method. There are two main methods of gaze estimation, the primary 

objective of eye-trackers, namely 2D and 3D gaze estimation. 2D gaze estimation is 

concerned with estimating where exactly the subject is looking on a surface such as a 

screen. On the other hand, 3D gaze estimation may estimate the gaze direction or point of 

regard in 3D space. 

 Calibration requirements. As it will be briefly explained below, most eye-trackers 

require a calibration to be executed either once for each system, once for each subject, or 

both. This serves as another useful element for categorisation. 

Further, eye localization schemes will not be discussed as they are only relevant to full-face 

images such as those taken by remote eye-trackers, unless relevant in terms of another technical 

aspect. 

Before further discussing the requirements of an eye-tracker that is suitable for non-visual eye-

movement application, it is useful to give a brief overview of existing designs based on the 

categories laid out above. 
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It seems that remote eye-trackers are by far the most common design, perhaps because it is 

considered to be less invasive than a head-mounted tracker, though this conception will be 

revisited later in this chapter. Thus, while there is a limited number of head-mounted designs 

(Ebisawa et al., 2002; Takegami et al., 2002; Li et al., 2005; Clarke et al., 2002; Hansen and Pece, 

2005) there are at seven to eight times more remote trackers found in the literature (Collet et al., 

1997; Heinzmann and Zelinsky, 1998; Kim and Ramakrishna, 1999; Matsumoto and Zelinsky, 

2000; Ohno et al., 2002; Sirohey et al., 2002; Benoit et al., 2005; Sun et al., 2006; Wallhoff et al., 

2006; Liang and Houi, 2007; Chen and Ji, 2008; Valenti et al., 2008; Yamazoe et al., 2008; White et 

al., 1993; Morimoto et al., 2000; Morimoto et al., 2002; Coutinho and Morimoto, 2006; Hennessey 

et al., 2006; Meyer et al., 2006; Li et al., 2007; Ramdane-Cherif and Nait-ali, 2008; Newman et al., 

2000; Shih et al., 2000; Andiel et al., 2002; Ji and Yang, 2002; Beymer and Flickner, 2003; Ishima 

and Ebisawa, 2003; Noureddin et al., 2004; Ohno and Mukawa, 2004; Shih and Liu, 2004; Park 

and Kim, 2005;  Yoo and Chung, 2005; Merad et al., 2006; Tsuji and Aoyagi, 2006; Park, 2007; 

Chen et al., 2008; Guestrin and Eizenman, 2008; Kohlbecher and Poitschke, 2008; Hennessey and 

Lawrence, 2009; Nagamatsu, 2009; Wang et al., 2005). 

 

FIGURE 4: ILLUSTRATION OF PURKINJE IMAGES. ADAPTED FROM HANSEN AND JI (2010). 
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PASSIVE AND ACTIVE ILLUMINATION 

Equally limited is the number of eye-trackers (regardless of whether they are head-mounted or 

remote) that use passive illumination (Hansen and Pece, 2005; Li et al., 2005; Colombo et al., 

2007; Newman et al., 2000; Wang et al., 2005; Heinzmann and Zelinsky, 1998; Yamazoe et al., 

2008; Matsumoto et al., 2000). Eye-trackers that use infrared light illumination offer several 

advantages over passive illumination: 

 Depending on the exact configuration, the pupil appears as very dark or very bright 

(called dark- and bright-pupil effect respectively), which allows the pupil to be detected 

easily and with accuracy. Because of the different reflection properties of the iris and the 

pupil, this is possible even if the iris appears as dark as the pupil in natural light. The 

bright-pupil effect is produced when the light source is coaxial to the camera and the 

dark-pupil effect otherwise (Ebisawa, 1998). 

 If a filter is put on top of the camera lens to block non-infrared light, brightness and 

contrast are kept constant and barely, if at all, affected by other light sources from the 

external environment. Similarly, shadows may only be formed by the diffusion properties 

of the infrared source which is within the control of the eye-tracker designer. Last but not 

least, reflections from objects in the environment do not appear in images captured with 

active illumination. 

 Infrared light is invisible to the human eye and therefore does not distract the subject or 

cause the pupil to contract. 

As can be seen from the list above, active illumination provides several important advantages 

over passive illumination. In addition, it costs very little to add infrared illumination to any 

hardware design and there has to be a very compelling reason to use passive illumination. There 

only two disadvantages to active illumination: 

 Active illumination does not perform quite as well in the outdoors and eye-trackers 

designed to work outdoors (Hansen and Pece, 2005) avoid the use of infrared 

illumination. 

 There is additional light emitted to the eye which will soon be regulated by international 

safety standards (Hansen and Ji, 2010). However, in all probability, this will only be a 
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concern for eye-trackers that use multiple infrared sources, especially extreme 

configurations such as the 3x3 grid of infrared light sources used by Li et al. (2007). 

GAZE ESTIMATION 

In order to determine the gaze, which is primary objective of eye-trackers, a feature-based 

approach is by far the most commonly used (e.g. Ebisawa et al., 2002; Li et al., 2005; Ohno et al., 

2002; Benoit et al., 2005). A feature-based approach means that the eye-tracker identifies a set of 

feature points in the image such as the pupil and the glint (for active illumination eye-trackers) in 

order to determine the gaze. In this category, two schemes are possible: (a) 2D regression-based 

gaze estimation and (b) 3D model-based gaze estimation (Hansen and Ji, 2010). One of the main 

challenges faced by eye-trackers which use the glint as their reference point is that with 

movement of the eyes and depending on the where the light source is placed, the glint may fall 

onto the sclera which makes it very hard to detect as they are both very bright regions. The eye-

corners are also used as reference points in some natural-light trackers where the glint is not 

available (Zhu and Yang, 2002; Valenti et al., 2008). 

2D regression-based gaze estimation is performed simply by asking the subject to look at several 

different calibration points      whose geometry on a surface (usually the screen) is known. At 

the same time, the pupil or iris locations      are recorded and the calibration points and feature 

point locations are used to calculate a function   such that         . Using this function, 

consequent pupil positions in the image can be mapped to screen coordinates. In schemes that 

use the corneal reflection, the vector between the glint and the pupil or iris location is used. 

CALIBRATION 

On the other hand, 3D model-based gaze estimation, as the name suggests, uses the set of 

detected feature points in combination with a model of the eye and in some cases the scene to 

estimate the gaze direction or point of regard in 3D space.  

All gaze estimation methods require that a set of parameters are determined through a 

calibration process; such processes can be categorised into the following categories (Hansen and 

Ji, 2010): 
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 Camera calibration, which refers to determining the intrinsic camera parameters (focal 

length, image sensor size and principal point). As long as the parameters do not change 

value (e.g. by changing the camera focus setting), they only need to be calculated once. 

 Geometric calibration, which refers to determining the relative positions and orientations 

of the eye-tracker components (camera and light sources) and target surface (screen). As 

long as the geometry does not change, this needs to be calculated only once. 

 Personal or subject calibration, which refers to determining parameters specific to the 

individual, such as the cornea curvature and the angular offset between visual and optical 

axes. Such parameters need to be calculated once for each subject. 

 Gazing mapping calibration, which refers to determining the eye-to-surface mapping 

functions. As mentioned earlier, this is usually done by having the subject look at points 

on the target surface whose geometry is known. 

A fully calibrated system is a system whose camera intrinsic parameters and geometry are 

known. A partially calibrated system is a system whose camera intrinsic parameters or geometry 

is known. 

HEAD-MOUNTED EYE-TRACKERS 

Most of the head-mounted eye-trackers found in the literature have followed very similar 

designs and methodologies.  

Ebisawa et al. (2002; Ebisawa, 1998) present a head-mounted tracker that uses active 

illumination and two light sources to alternatively produce the dark- and bright-pupil effect and 

using simple image processing algorithms, the positions of the pupil and glint are detected, the 

two feature points used to determine the gaze. A good example of the common misconception 

that the glint does not move when the eyeball moves, when in fact it does; in such cases it is 

erroneously implicitly assumed that the corneal surface is a perfect mirror and thus if the head is 

kept fixed, the glint will remain stationary even when the cornea rotates. In some cases, a 

simplifying assumption that the glint is stationary may however give satisfactory results. 

Takegami et al. (2002) use a rigid setup where the subject has to rest his chin on a metal frame 

while holding onto it with their hands, similar to Ramdane-Cherif and Nait-ali (2008). The 

camera is calibrated and active illumination is used; the algorithm extracts the pupil contour, 
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from which the pupil flatness (ratio of major and minor axis of an ellipse) is calculated. In this 

paradigm, the eye is modelled as a sphere and the pupil as a circle. However, the pupil will only 

appear as a circle in the image if it is exactly coplanar with the camera lens. Otherwise, it appears 

as an ellipse and by determining the flatness of this ellipse, the subject’s gaze can be estimated. It 

is reported that in this setup no subject calibration is necessary. 

Li et al. (2005) present an active illumination head-mounted eye-tracker and a novel method to 

estimate the glint and pupil feature points. Once the glint is located, radial lines are extended to 

locate candidate edge points for the pupil contour, which are then optimised using the Random 

Sample Consensus (RANSAC) algorithm. The distance between the glint and the pupil centre is 

then used to calculate 2D gaze on a screen. 

Clarke et al. (2002) present a high-frequency (400Hz) head-mounted system that makes use of 

binocular expensive CMOS cameras that are placed on the side of the headset (the eye images are 

captured through mirrors). The system presented by Hansen and Pece (2005) is quite unique in 

that it is reported to be able to track in any lighting conditions and can switch between infrared 

and non-infrared configurations without changing its parameters. However, it uses particle 

filtering to do the tracking, which is generally computationally complex and is not easy to 

implement in real-time (Kwok et al., 2004). 

REMOTE EYE-TRACKERS 

Remote eye-trackers can be easily categorised between: 

 Trackers which use a single camera and none or a single infrared source (Collet et al., 

1997; Heinzmann and Zelinsky, 1998; Kim and Ramakrishna, 1999; Matsumooto, 2000; 

Ohno et al., 2002; Sirohey et al., 2002; Benoit et al., 2005; Sun et al., 2006; Wallhoff et al., 

2006; Liang and Houi, 2007; Chen and Ji, 2008; Valenti et al., 2008 and Yamazoe et al., 

2008). 

 Trackers which use a single camera but multiple infrared sources (White et al., 1993; 

Morimoto et al., 2000; Morimoto et al., 2002; Park et al., 2005; Coutinho and Morimoto, 

2006; Hennessey et al., 2006; Meyer et al., 2006; Li et al., 2007 and Ramdane-Cherif and 

Nait-ali, 2008). 
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 Trackers which use multiple cameras and one or more infrared sources (Newman et al., 

2000; Shih et al., 2000; Andiel et al., 2002; Clarke et al., 2002; Ji and Yang, 2002; Beymer 

and Flickner, 2003; Ishima and Ebisawa, 2003; Noureddin et al., 2004; Ohno and 

Mukawa, 2004; Shih and Liu, 2004; Yu and Eizenmann, 2004; Park and Kim, 2005; Yoo 

and Chung, 2005; Merad et al., 2006; Tsuji and Aoyagi, 2006; Park, 2007; Zhu and Ji, 

2007; Chen et al., 2008; Guestrin and Eizenman, 2008; Kohlbecher and Poitschke, 2008; 

Hennessey and Lawrence, 2009 and Nagamatsu, 2009). 

One of the major problems with remote eye-trackers is movement of the subject’s head. Not only 

is the resolution of the eyes reduced because of the distance between the subject and the camera, 

but the subject’s head is able to move unrestrictedly and the eye-tracker must be able to cope 

with that if it is going to track the subject’s gaze successfully.  

Single camera remote systems use a variety of different methods to compensate for head-

movement and calculate the gaze.  

Collet et al. (1997) detect the location of the eyes and nose and use these feature points to 

calculate face orientation and gaze. Several similar schemes appear in the literature; Heinzmann 

and Zelinsky (1998) use the mouth and eye corners, Wallhoff et al. (2006) use the eyes and 

mouth, Chen and Ji (2008) use the nose and eye corners, Valenti et al. (2008) use the eye corners 

only and Yamazoe et al. (2008) use the mouth, nose and eye corners. Head-pose estimation is 

done similarly with stereo camera systems; for example, Newman et al. (2000) use the eye 

corners and mouth corners.  

In a screen setup where the distance of the subject from the screen is known, Kim and 

Ramakrishna (1999) use the point between the eyes to compensate for small head-movement 

and the iris length to calculate the distance between the camera and the eyeball. Finally, 3D gaze 

is calculated using the iris centre. Two similar setups are employed by Matsumoto (2000) who 

uses the eye corners, anthropological data and the iris radius to initialise a 3D eye model that is 

used then to estimate 3D gaze; the mouth and eye corners are used to estimate face orientation. 

Wang et al. (2005) also calculate the iris radius from the image to facilitate a 3D model of the 

eyeball and use the eye-corners to disambiguate between two possible solutions for the gaze 

vector. The eye corners and iris centre are also used by a few other systems (Tian et al., 2000; 
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Benoit et al., 2005). Sirohey et al. (2002) present a system where the iris and eyelids are detected 

and tracked. 

The system described by Ohno et al. (2002) is “traditional” in that is uses the glint and pupil 

feature points but also includes an eyeball model to calculate 3D gaze. The system by Sun et al. 

(2006) uses a similar model which also includes the eye-corners. Neural networks have been 

used to determine gaze in some systems (e.g. Stiefelhagen et al., 1997). 

A single-camera remote system that can classify eye-movements in the classes defined by the 

NLP EAC model (up left, up, up right, left, centre, right, bottom left, bottom and bottom right)  is 

proposed by Liang and Houi (2007), which classifies gaze into eight (8) different classes by 

calculating the difference between the pupil looking forward and the current pupil location. 

With increased cameras and/or light sources, it is possible to use 3D models that result in 

greater theoretical accuracy. The detailed description of these models and how they operate in a 

multi-glint or multi-camera setup is beyond the scope of this review and the interested reader is 

referred to the excellent reviews already available (Guestrin and Eizenman, 2006; Villanueva et 

al., 2007; Villanueva and Cabeza, 2007). In single-camera, multiple-glint cases, calibration to the 

subject is still required; in their work, Villanueva and Cabeza (2008) mathematically prove that a 

system with one camera and two glints requires a minimum of one calibration point to give 

geometrically correct results. Two systems that do not abide to this rule are the systems by 

Morimoto and Flickner, (2002), which is reported to have lower accuracy, and Kohlbecher and 

Poitschke (2008), which use the pupil ellipse to extract the 3D orientation. Systems with more 

than one camera and sources are able to operate calibration-free (Shih et al., 2000; Nagamatsu, 

2009). 

Arrays of infrared sources larger than two have been used in limited occasions; for example, 

Coutinho and Morimoto (2006) use five sources (four on the screen and one on the camera), 

Meyer et al. (2006) use four infrared sources, Li et al. (2007) use an array of 3x3 infrared 

sources, Guestrin and Eizenman (2008) use four infrared sources. These arrays are used either 

for the ability to calculate 3D parameters or to overcome the problem mentioned earlier when 

the glint is positioned in the sclera. 
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Appearance-based methods (Stiefelhagen et al., 1997; Tan et al., 2002; Xu et al., 1998) are an 

alternative approach to feature-based tracking reviewed so far. These methods attempt to detect 

and track the eyes by directly using their photometric appearance (either through image 

intensity or through its response to a filter), instead of extracting features from it. From the large 

list of appearance-based eye-trackers in the comprehensive review by Hansen and Ji (2010), only 

one was designed to work with a head-mounted eye-tracker (Hansen and Pece, 2005). The latter 

eye-tracker uses particle filtering to track gaze and while it is very robust, it is also very complex. 

There are several reasons why appearance-based methods are less favoured for this application:  

a) They usually require a large amount of training data. 

b) They are used in remote eye-tracking systems which means that they would most likely 

require significant modification to be used with the close-up pictures of a head-mounted 

tracker. As will be discussed in more detail in Chapter 4, the task of modelling or 

detecting eye features becomes harder as the camera gets closer to the eye. First, the 

appearance of the eye-corners is significantly different when viewed close up than when 

viewed from a remotely placed camera and second, the change in the camera view angle 

may significantly change the appearance of the eye. Both changes would probably 

decrease the accuracy of an appearance-based approach or require ever larger training 

data sets. 

c) They are much more difficult to evaluate as exact landmarks are not easily defined 

because they are based on contours. 

The review of remote eye-trackers and the methods involved has been intentionally brief for two 

reasons. First, as it will be argued below, remote eye-trackers are unsuitable for this application 

and thus, delving into the complexities of such systems would only serve to deviate from the 

scope of this thesis. Second, there are already detailed reviews of such systems (Guestrin and 

Eizenman, 2006; Hansen and Ji, 2010). 

EYE-TRACKER INVASIVENESS 

At the top of the requirement list is the minimisation of invasiveness, the ability to track even the 

most extreme eye-movements and ease of use. While a formal definition of invasiveness has not 



48 
 

been found in the eye-tracking literature, it is normally regarded as a combination of the 

following factors:  

a) whether it requires contact to the eyeball or other parts of the body  

b) whether it restricts any type of movement (e.g. head) and  

c) if it is mounted on the head or body, how much it weighs and how long it takes before 

this becomes uncomfortable for the user 

With invasiveness defined by the aforementioned factors, a remote eye-tracker is the least 

invasive type of eye-tracker that can be developed as it is not mounted on the subject and thus 

does not impose any further weight. Also, as mentioned earlier, because most remote eye-

trackers encompass some form of head pose estimation, some head-movement is acceptable. Of 

course, how much movement is acceptable is solely defined by the performance of the head pose 

estimation. 

Another important factor that determines the invasiveness of an eye-tracker and is rarely, if ever, 

explicitly mentioned in the literature is how much the subject is aware of his or her eyes being 

tracked. The feeling of being “watched” often makes people self-conscious and aware of every 

movement they make. Depending on what the task of the experiment is, it may also trigger 

performance anxiety. In any case, in experiments where rapport between the subject and the 

experimenter is important, it surely does not help if the subject is aware of being the subject of 

not only the experiment itself but the eye-tracker too. Similarly, if an elaborate subject 

calibration procedure is required, it can remind the subject of the eye-tracker’s presence and 

thus contribute towards reducing their comfort during the experiment. 

Other than an out-dated comparison of five commercial eye-trackers on comfort (Williams and 

Hoekstra, 1994), there is no formal study of the invasiveness of different eye-trackers and the 

subjective experience of subjects during an experiment.  

SUITABILITY OF REMOTE EYE-TRACKERS 

Whether remote eye-trackers are any less invasive or not, they are definitely much more 

expensive to build as they usually require more than one camera and because of the distance 
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from the camera to the subject’s eyes, higher image resolution and fidelity is required, which 

makes them more expensive than cameras that may be used on a head-mounted solution.  

For this particular application, remote eye-trackers may prove impractical for several additional 

reasons: 

 In applications where the subject is required to look at a screen (such as tracking how 

people browse a website), the camera can be hidden in the screen and thus minimize 

invasiveness in this way. However, in an interview between subject and experimenter, 

this is significantly harder to achieve. 

 Future developments in this kind of research may require that both the subject and 

experimenter’s eye movements are tracked simultaneously. If two or more cameras are 

required for each pair of eyes tracked, the setup quickly becomes more expensive and 

even harder to conceal. Furthermore, the more the cameras, the harder the system 

becomes to setup and simplicity is considered to be a key requirement in this application. 

 Head-pose estimation is required and it comes at the cost of additional computational 

complexity and where more than one camera is involved, additional hardware costs. In 

fact, as referenced earlier, some remote eye-trackers that use infrared illumination and a 

glint-centred reference system go to great lengths to ensure head-pose invariance by 

using multiple infrared light sources. 

 Depending on the accuracy and limits of head-pose estimation, head-movement may be 

restricted. Also, regardless of how good the head-pose estimation is, there may be cases 

when the pupil is not captured sufficiently well or at all by the remote camera. This may 

happen if for example the camera is placed below head level, the subject’s head is tilted 

upwards and the subject performs an extreme upwards eye-movement.  

 A fully calibrated system may be required (e.g. Meyer et al., 2006). This means that not 

only the camera’s intrinsic parameters need to be known but also the geometric topology 

of the camera(s) and the subject. While the calibration process is plausible for a rigid 

setup in front of a computer monitor, doing so for an interview-type experiment may be 

impossible as it requires much more flexibility. 

 While processing power is much cheaper than it used to be, the enhanced processing of a 

remote system significantly demotes its attractiveness. 
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BUILDING A HEAD-MOUNTED EYE-TRACKER 

A lightweight head-mounted eye-tracker can be minimally invasive (no contact to the eye, small 

weight, user experience similar to wearing vision glasses) and it does not require integration of 

different and isolated systems (remote systems require head pose estimation which is usually 

done with a second camera). In terms of accuracy, both types of systems can perform well 

depending on the hardware and setup used (e.g. Meyer et al., 2006; Villanueva et al., 2007). 

Further, given that there exists a publicly-available low-cost design of a light-weight head-

mounted eye-tracker that is also easy to assemble (Babcock et al., 2003; Babcock and Pelz, 2004), 

a head-mounted design is a good choice for this project. 

Amongst head-mounted eye-trackers, there are more design and implementation choices to be 

made, those of light source (natural light or passive versus infrared light or active) and gaze 

estimation method. 

Adding infrared light source(s) is a relative easy procedure and the choice between active and 

passive illumination significantly affects the problem formation. When passive illumination is 

used, the input image is subject to severe brightness changes depending on the light source of the 

environment and artefacts caused by shadows, reflections from objects in the environment and 

pupil tracking becomes very hard to impossible depending on the subject’s eye colour; in fact, as 

seen earlier, it is common for passive eye-trackers to track the iris as it is indistinguishable from 

the pupil. 

Of course, using infrared light does not solve every problem. One very important challenge of 

designing an eye-tracker (whether active or passive) is that of finding a reliable reference feature 

point. In most cases, a glint-centred reference system is used (e.g. Ebisawa et al., 2002; Li et al., 

2005; Ohno et al., 2002; Benoit et al., 2005) where the distance between the pupil and the glint is 

what determines the output of the eye-tracker (usually a mapping to the screen or 3D world). 

Specifically for remote systems, while eye corners are often used for head pose estimation (Lam 

and Yan, 1996; Zhang, 1996; Feng and Yuen, 1998; Tian et al., 2000; Sirohey et al., 2002; Wang et 

al., 2005; Xu et al., 2008) they are a lot less preferred as reference points (Zhu and Yang, 2002; 

Valenti et al., 2008). 
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In terms of gaze estimation, 2D regression-based estimation requires a surface to map eye-

movements onto; in the case of an interview where the subject is not looking at a screen, this 

method cannot be applied and thus rules out the design for this application. In the case of 3D 

model-based gaze estimation the camera’s intrinsic parameters and scene geometry (relative 

position of screen, subject, camera and light source(s)) need to be known. This is a great 

disadvantage, especially for head-mounted systems where the scene geometry is significantly 

affected by the subject’s face morphology (i.e. even if the camera is always placed at a fixed 

location, the variance of eye cavities in each subject will determine the exact distance between 

the camera and the eye). Furthermore, this information can be difficult to obtain and it restricts 

the eye-tracker to a rigid setup. Thus, for this application gaze mapping techniques are 

unnecessary.  

From the above survey, it is appropriate to conclude with a remark made by Hansen and Ji 

(2010), who state that “each technique has its advantages and limitations, but the optimal 

performance of any technique also implies that its particular optimal conditions with regard to 

image quality are met”. In other words, each technique will work well for the image quality that it 

has been designed for. In the case of the REACT eye-tracker, the application requirements have 

driven the selection of the design that offers the best compromise and in Chapter 4 the feature 

detection algorithms that make tracking with the REACT eye-tracker possible are outlined. 
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CHAPTER 4: FEATURE EXTRACTION 

After the review of eye-tracking systems in Chapter 3 and the relevant discussion in terms of 

their requirements, a novel eye-tracker is introduced in this chapter which fulfils them. The 

hardware design of the eye-tracker is deliberately omitted from this chapter as it is largely based 

on a previous design by Babcock and Pelz (2004) and is described in Appendix A. Instead, this 

chapter focuses on the algorithms involved in extracting the features from the input images and 

calculating the 2D gaze angle. 

Thus, what follows is an extensive discussion of the image acquisition and image properties that 

will help gain insight into the computer vision problem of extracting the eye features and its 

complexity. Then, the algorithms that are responsible for extracting the pupil, iris radius and eye 

corners are described in-depth. Finally, the calculation of the 2D gaze vector is also described in-

depth before moving onto the evaluation of these respective components in Chapter 5. In each 

section, the intermediate steps are visually illustrated; sample visualisations of the complete set 

of features for each subject is shown in Table 8 at the end of this chapter while randomly selected 

frames  throughout each test sequence with the pupil marked are shown in Table 9, which is also 

located at the end of this chapter. The last section of this chapter discusses the computational 

complexity of the algorithms involved in extracting the features. 

ACQUSITION AND IMAGE PROPERTIES 

This section intends to examine in detail the properties of the source images taken with the 

REACT eye-tracker in order to better understand the problem at hand and how it may be best 

solved.  

Camera and light source 

The camera used is Supercircuits PC206XP which is a grey-level pinhole camera and it captures 

images 640 pixels wide by 480 pixels tall at 29.97 frames per second (NTSC). A standard infrared 

(IR) LED that transmits light at a wavelength of 940nm is used as the light source and a Kodak 

Wratten 87c IR filter is placed on top of the camera to filter out non-infrared light. For further 

details on the hardware of the REACT eye-tracker, please refer to Appendix A. 
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Interlacing 

First and foremost, the input images are interlaced and thus introduce a severe artefact to be 

dealt with. Interlacing is a technique that was first developed with the introduction of the 

cathode ray tube (CRT) televisions and was a means to improve the quality of the picture without 

increasing the bandwidth requirements (Luther and Inglis, 1999).  

Interlacing works by labelling each frame into odd and even fields (fields are synonymous to 

scan lines or just lines) and refreshing the odd fields at different intervals to the even fields 

(Figure 5).  

For vision processing, non-progressive (interlaced) images create several problems as if there is 

any motion in the image, no entity is continuous (this is often described as motion blur). An 

example of this can be seen in Figure 6 (a); as the eye is moving quickly upwards and the two 

fields are updated at different points in time, three different pupil outlines can be seen in the 

image: one from the pupil position at time T (odd field), another from the pupil position at time 

T 1 (even field) and their overlap. Thus, computer vision algorithms would face significant 

difficulties in detecting the pupil from the original image (or other features for the matter). 

De-interlacing methods are largely undocumented in computer vision literature and are mostly 

discussed informally on the World Wide Web, e.g. Wikipedia, 2009. Of the reported methods of 

de-interlacing a video, some are more complex (and slower) than others. For the REACT eye-

tracker, the most simplistic3 of methods was used to de-interlace the video: splitting each field to 

a frame of its own (referred to as half-sizing, Wikipedia, 2009). Thus, the odd fields in frame 

number   are collated to compose frame number     and the even fields in frame   are 

collated to compose frame number      . The result video has twice the frame-rate of the 

original; an example output of the de-interlacing may be seen in Figure 6 (b). When the pupil or 

any other object is moving really fast some smearing will still be visible; however this smearing 

cannot be removed completely using de-interlacing as it is a limitation imposed by the speed that 

the camera captures frames at. 

                                                             
 

3 More complex schemes usually involve using interpolation to recover missing samples and/or motion 
compensation (Wikipedia, 2009). 
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It is also worth noting here that because of this de-interlacing, the image is vertically cut in half 

i.e. vertical lengths are half their original length. 

From here on, all displayed images will be de-interlaced or the products of the de-interlaced 

source. 

 

 

FIGURE 5: ILLUSTRATION OF THE INTERLACING PROCESS. 
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(A) EXAMPLE OF INTERLACED FRAME WHEN THE EYE IS MOVING. 

 

(B) EXAMPLE FRAME AFTER IT HAS BEEN SPLIT INTO TWO FIELDS. 

FIGURE 6: ILLUSTRATION OF DEINTERLACING 
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Infrared lighting 

As discussed in Chapter 2, the REACT eye-tracker was purposefully built to use infrared lighting 

due to the immediate advantages it offers over normal light. Re-iterated here for completeness, 

recording the eye-tracker images without the infrared light source and non-infrared filter can 

potentially introduce severe changes in the output’s histogram, contrast and brightness. Natural 

light eye-trackers (e.g. Hansen and Pece, 2005) face a great challenge in dealing with such 

variations; these variations can be a result of two potential reasons: 

 First of all, natural environment light sources during the day (e.g. sun) can vary 

depending on the current point in time.  

 Secondly, because we use the normal light spectrum in our everyday lives, it is open to 

interference from several sources whether working inside or outside. These 

interferences would be tough and potentially expensive to control. In a usual home or 

office environment, there are several types of light sources that can cause such 

interference; this may happen either when the light source varies the intensity of its 

output over time as noted earlier or, when the subject changes the orientation of his or 

her head with respect to the light source (for example, when turning the head towards or 

away a lamp).  

Thus, the infrared setup of the REACT eye-tracker is ideal with respect to the above-mentioned 

problems as infrared lighting provides a consistent light source that does not fluctuate over time 

and it is not affected by the subject’s position in space as the light source is fixed in a position 

relative to the subject’s head. This effect can be clearly seen in Figure 7; in (a) where the eye is 

illuminated by visible light, the reflection of a window can be seen on top of the pupil, as well as 

the non-uniform lighting distribution across the image. In contrast, in (b) where the eye is 

illuminated by infrared light, the image brightness is solely dependent on the diffusion 

properties of the infrared source (infrared LED).  

Furthermore, the infrared setup offers the significant advantage of the dark pupil effect where 

the pupil appears very dark and the iris appears very light independent of the subject’s eye 

colour, due to the different infrared light reflection properties of the pupil and the iris. In 

comparison, the visible light image makes the separation of iris and pupil very hard, especially 

considering the reflections of other objects on the eye. 
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(A) IMAGE TAKEN IN THE VISIBLE LIGHT SPECTRUM (I.E. WITHOUT INFRARED ILLUMINATION). 

 

 

(B) IMAGE TAKEN IN THE INFRARED LIGHT SPECTRUM 

FIGURE 7: ILLUSTRATION OF IMAGES TAKEN IN THE VISIBLE VERSUS INFRARED LIGHT SPECTRUM. 
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Figure 8 illustrates a set of example source images and their corresponding heat map images. 

Heat maps are generated by mapping the [0, 255] grey scale range to a special ordering of the 

RGB (Red-Green-Blue) colour space where low intensity values are coloured blue (cold) and high 

intensity values are colour red (hot). Heat map images were found to be useful in visually 

inspecting grey scale images as they expand the 8-bit [0, 255] range to                possible 

values and can provide insights to the structure of the image by increasing the visibility of 

intricacies in the image that would otherwise be hardly distinguishable. 

As can be seen in Figure 8, the infrared light source is directly pointed to the eye centre from 

below and thus the majority of “heat” can be seen along the lower eyelid and on the eyeball. The 

dark pupil effect can also be easily noticed both in the original and heat map images. The 

darkest/coldest area is usually the pupil whereas the brightest/hottest area is the glint4. Once 

again, it can be seen how the pupil is always dark whereas the iris appears as a shade of grey, 

regardless of the subject’s eye colour. As already mentioned, this is because of the different 

reflection properties of the pupil and iris. 

To further establish the difficulty in detecting the eye features, especially the iris boundaries and 

the eye corners, the performance of several standard edge and corner detectors and other similar 

algorithms is presented below. The aforementioned advantage of infrared illumination of the 

separation between the pupil and iris is also a disadvantage in detecting the iris boundaries. This 

is because in some subjects, the iris appears as a very light shade of grey and it can hardly be 

distinguished from the sclera (see Figure 8 for such examples). This is because the iris usually 

darkens on the border to the sclera but this dark border is less evident (thinner) in some people. 

Further, because the camera is placed close to the eye, the inner and outer corners appear to 

have a different shape. This appears to be due to the appearance of the tear gland which is part of 

the inner eye corner. Thus, the inner eye corner extends further than the outer eye corner, as 

measured from the eyeball centre. 

                                                             
 

4 The small white circle that is the direct reflection of the infrared LED on the cornea and appears as red in 
the heat-mapped images. 
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Figure 9 visually illustrates the performance of standard edge and corner detectors as well as 

some custom ones5: 

 Sobel edge operator (Gonzalez and Woods, 2001), with a 3x3 kernel. 

 Canny edge detector (Canny, 1986) with two different set of parameters. 

 Laplace operator (Gonzalez and Woods, 2001), with filter aperture of 3. 

 Laplacian of Gaussian (LoG) filter (Gonzalez and Woods, 2001) – 5x5 Gaussian kernel, 

sigma set to 1.4 and Laplace filter aperture of 3. Both the absolute value of the filter 

output and the zero-crossings are illustrated. 

 Minimum and maximum Eigen-values of the 2x2 gradient (or covariance) matrix 

extracted on a 3x3 window for each pixel. These Eigen values can be a reliable source of 

corners or other features and are used in other popular vision algorithms such as the 

Harris operator (Harris and Stephens, 1988) and the KLT feature tracker (Shi and 

Tomasi, 1994). 

 Harris edge and corner detector  (Harris and Stephens, 1988). 

 Variance map – computed as the variance of a 5x5 window for each pixel.  

 Partial x- and y-derivatives, with and without local maxima suppression. 

As can be seen in Figure 9, most complex corner detectors perform poorly both for the detection 

of the iris boundaries as well as the detection of the eye corners. In fact, in most cases the iris 

boundaries are not preserved as strong edges in the output whereas the filtered output near the 

eye corners is heavily obstructed by edges from shadows on the sclera and eyelashes. In the next 

section, where the feature detection is explained in depth, the partial x- and y- derivatives were 

chosen over the more complex detectors because they were found to give similar output at a 

fraction of the time. 

 

  

                                                             
 

5 The original image has been smoothed using a Gaussian 5x5 kernel before being processed with each 
algorithm. 
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FIGURE 8: EXAMPLES OF INPUT IMAGES (LEFT) AND CORRESPONDING HEAT MAPS (RIGHT) FOR 

SUBJECTS 1 THROUGH 9. IMAGES WERE CROPPED TO INCREASE VISIBILITY. 
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ORIGINAL  (GAUSSIAN-SMOOTHED WITH A 5X5 KERNEL) 

 
SOBEL 3X3 

 
CANNY (TWO DIFFERENT SETS OF PARAMETERS) 

 
LAPLACE: ABSOLUTE VALUE (APERTURE = 3) 

 
LAPLACIAN OF GUASSIAN: ABSOLUTE VALUE (GAUSSIAN 5X5 KERNEL, 
SIGMA = 1.4, LAPLACE APERTURE = 3) 
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ZERO-CROSSINGS IN LAPLACIAN OF GUASSIAN 

 
MAP OF THE MAXIMUM EIGEN-VALUES (BLOCK SIZE = 3, APERTURE = 
3) 

 
MAP OF THE MINIMUM EIGEN-VALUES (BLOCK SIZE = 3, APERTUERE 
= 3) 

 
HARRIS CORNER DETECTOR OUTPUT 

 
VARIANCE MAP (5X5 KERNEL) 

 
PARTIAL X-DERIVATIVE 
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PARTIAL Y-DERIVATIVE 

 
PARTIAL Y-DERIVATIVE, LOCAL MAXIMA SUPPRESSED (1X3 WINDOW) 

 

FIGURE 9: EXAMPLES THE PERFORMANCE OF POPULAR CORNER 

DETECTORS. IMAGES WERE CROPPED AND SCALED WHERE 

APPROPRIATE TO INCREASE VISIBILITY. 
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EYE-FEATURE DETECTION ALGORITHM OVERVIEW 

The REACT eye-tracker has been designed to detect a set of eye features (pupil location, iris 

radius and eye corners location) that can potentially be used to set up various different eye-

tracking projects. While other configurations can be easily implemented, the default 

configuration of the REACT eye-tracker uses these features to determine the two-dimensional 

direction of gaze, in degrees. A high-level block diagram of the feature detection and 2D gaze 

calculation is shown in Figure 10. A classification scheme (e.g. up and to the left) is proposed and 

implemented for the case study in Chapter 6. The eye-tracker processes images off-line although 

this is an implementation detail and not a requirement. 

Taking advantage of the dark pupil effect discussed earlier, estimating the location of the pupil 

can be achieved using a simple thresholding technique and ellipse fitting. Global thresholding 

(versus adaptive) is used and therefore further refinement of the pupil contour is performed 

using an active contour (also known as a “snake”; Blake and Isard, 1998).  

Then, using the concept of grey level edge strength used in cell segmentation tasks (Zhou and 

Pycock, 1997) the iris radius is detected and quantified. The eye feature detection is completed 

by initiating a search for the eye corners at the iris boundaries; edge information is obtained by 

performing local-maxima suppression of the y-derivative of the input image.  

Both the iris and eye corner detection require that the subject is looking approximately straight 

ahead. This requirement is because of previously-mentioned reasons: a) as the eye moves, the 

iris is easily obscured by the eyelids/eyelashes and will also change shape b) as the eye moves, 

the eyelids near the eye corners will change shape and reveal or obscure more of the eyeball, 

thus severely altering the appearance of the corners. 

Detecting the iris serves both to localize the eye corners position and to calculate the 3D gaze 

when a calibrated camera is available, like in the system presented by Wang et al. (2005). 

Further, the eye corners serve as reference points and are used to calculate the reference-axes 

for the calculation of the gaze angle as well as re-calibration of the eye-tracker over long 

sequences when the glasses may have changed position on the subject’s head. 
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Thus, even though it does not require an explicit, interactive subject calibration, this default 

configuration of the REACT eye-tracker requires only one frame to calibrate for each individual 

subject. 

In the following sub-sections, the eye feature detection and direction of gaze calculation 

algorithms are extensively discussed. 

PUPIL CONTOUR ESTIMATION 

The first step in detecting the pupil is thresholding the input image        to a binary image    

with a threshold value   such that: 

        {
                    

             
 

Example output of thresholding is demonstrated in Figure 11. 

Using connected components labelling (Gonzalez and Woods, 2002), the binary image can be 

converted to a higher-level description of the image content. In brief, the labelling algorithm 

works by scanning the image top-to-bottom, left-to-right and labelling each pixel and those 

neighbour pixels that are connected to it with the same label, either with a 4- or 8-way 

connectivity criterion (see Figure 12). A second image scan is done in order to adjust equivalent 

labels. The resulting image contains the same intensity value (label) for each set of connected 

pixels (blob).  

As an extension to the standard connected components labelling algorithm, during the labelling 

process, the following information is collected about each blob: a) the bounding rectangle, 

defined by the top-, bottom-, left- and right-most pixels, b) the area, defined by the number of 

pixels that have this blob’s label and c) a list of the locations of all the pixels that compose this 

blob. This information is used to assist consequent connected component processing; for 

example, a minimum and maximum blob area is defined (     and      respectively) and used 

to filter blobs resulting from random noise (too small) and blobs that are formed in the darker 

areas of the image (where the infrared illumination fades rapidly and the resulting blobs occupy 

a very large area).  
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FIGURE 10: HIGH-LEVEL BLOCK DIAGRAM FOR THE REACT EYE-TRACKER IMAGE PROCESSING 

ALGORITHM. 

 

 
ORIGINAL 

 
THRESHOLDED IMAGE 

FIGURE 11: EXAMPLE OUTPUT OF THRESHOLDING. 
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FIGURE 12: 4-CONNECTIVITY (LEFT) AND 8-CONNECTIVITY (RIGHT). 

Mathematically put, from the original set of blobs   , a new set     is formed by discarding any 

elements   where 

                             

     is now the set of pupil candidates. If the set is empty, the default threshold value    is 

adjusted to     ,     ,      and      and the thresholding and labelling processes are 

applied again. This adjustment is necessary because the threshold is not chosen adaptively and in 

some cases may include too much or too little of the pupil.  

At this stage, it is possible to take advantage of the pupil morphology. If we were to point a 

camera lens at a subject who is looking straight ahead, the pupil would appear approximately 

circular. The exact eyeball morphology is fairly complex and such approximations are necessary 

to design reduced complexity systems (Villanueva and Cabeza, 2007). In the case of the REACT 

eye-tracker, the pupil always takes an approximately elliptical shape for two reasons: 

 the camera is pointed to the eyeball from below and is off-centre 

 the video is de-interlaced by splitting the odd and even field into separate frames, thus 

vertically “cutting” the image in half (see Figure 6) 

Therefore, by taking into account the elliptical shape of the pupil, the algorithm to select the 

pupil blob from the set of candidate blobs     {          } is as follows. 

For each blob    in    , the outmost pixels             are selected by scanning each line 

within the blob’s bounding rectangle and selecting the first and last pixel that matches the blob’s 

label. The set of pixels                 is then used to fit an ellipse       using the algorithm 

described by Halir and Flusser (1998). For each ellipse      , a measure of the fit error        is 
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calculated as the average of the Euclidean distance between the detected points to the ellipse 

contour (see Figure 14). Finally, the pupil contour estimate blob        is found by selecting the 

blob in set     which has the minimum error. 

Each step of the above process is visually illustrated in Figure 13. 

 
ORIGINAL 

 
TRESHOLDED IMAGE 

 
LABELLED IMAGE 

 
LABELLED IMAGE AFTER THE CONNECTED 
COMPONENT SIZE CONSTRAINT HAS BEEN APPLIED 

 
LABELLED IMAGE AFTER AN ELLIPSE HAS BEEN FITTED TO EACH 
COMPONENT, SHOWING THE ERROR VALUE ASSIGNED (THE YELLOW BLOB 
BEING THE LOWEST IN ERROR WAS SELECTED AND RE-PAINTED RED TO 
ILLUSTRATE THE SELECTION). 

 
FIGURE 13: ILLUSTRATION OF THE INTERMEDIATE STEPS OF THE PUPIL CONTOUR ESTIMATION 

ALGORITHM. 
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FIGURE 14: ILLUSTRATION OF THE DISTANCES USED TO CALCULATE THE ELLIPSE FIT ERROR ON A 

HYPOTHETICAL PUPIL ELLIPSE (RED LINES DESIGNATE THE DISTANCES WHOSE AVERAGE IS THE 

ERROR ESTIMATE). 

PUPIL CONTOUR REFINEMENT 

After performing an initial estimation of the pupil contour from the thresholded image, it is 

necessary to further refine it; since global thresholding is used, the results are very much 

dependent on the threshold value used. Whilst the pupil is always dark in the images, just how 

dark it is will depend on the camera topology (distance from the eyeball and angle of positioning 

i.e. exactly how the infrared light falls on the pupil), its pupil reflection properties and how they 

vary between subjects.  

Explained simply, a strict threshold value     , that is too low, may mark less or even no pixels 

from the pupil region as foreground. On the other hand, a permissive hypothetical threshold 

     , that is too high, may mark more pixels than those inside the pupil region as foreground. 

On the other hand, a more balanced threshold      performs much better as shown in the 

comparison of Figure 15. As mentioned in the above section, different values of T are tried if a 

match for the pupil is not found; only in this sense the thresholding algorithm is adaptive. 
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ORIGINAL 

 
TOO LOW THRESHOLD VALUE 

 
TOO HIGH THRESHOLD VALUE 

 
BALANCED THRESHOLD VALUE 

FIGURE 15: ILLUSTRATION OF THE DELICATE BALANCE REQUIRED BY GLOBAL THRESHOLDING. 

An alternative route to global thresholding would have been to use local or adaptive thresholding 

(Gonzalez and Woods, 2002). Local thresholding is where the thresholding function applied 

depends on some local property of each pixel. Adaptive thresholding is where the thresholding 

function applied also depends on the spatial coordinates of each pixel. For example, one possible 

scheme of adaptive thresholding would be to examine small or medium-size neighbourhoods 

around each pixel and set the threshold to the mean value, median value or the average of the 

minimum and maximum value. While these operations are simple compared to other, more 

complex, schemes (e.g. Chow and Kaneko, 1972 cited by Gonzalez and Woods, 2002), they still 

increase the computational complexity 6  thus making them less suitable for real-time 

applications. At 59.97 frames a second, even small additions can make a significant difference in 

processing speed. The results from the next chapter (evaluation) support that this global 

thresholding scheme performs sufficiently well for this application despite its simplicity. 

Now that the need for contour refinement has been established, more detail can be added as to 

how this is done in the REACT eye-tracker through the use of active contours. 

                                                             
 

6 For example, a scheme that examines the mean value of a     neighborhood, would require     
more additions and one division per pixel. 
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An active contour or “snake” is an energy minimizing spline that deforms to fit local minima 

(Blake and Isard, 1998); since active contours match local minima, their initial position must be 

explicitly defined. Snakes are versatile and can be adapted to wrap around various types of 

objects; thus, they are widely used in computer vision problems. Ramadan et al. (2002) used a 

snake to perform pupil tracking; that is, the task of tracking the pupil was performed solely with 

a modified snake (new pressure model and curvature formulation). In our case, a standard snake 

is used only to refine the contour obtained from thresholding. 

The energy function that the snakes minimize is: 

       ∫         (    )        (    )                       

                 is a parametric representation of the snake’s position,           is the internal 

energy of the spline due to stretching and bending,        is a measure of the attraction of image 

features such as contours and             is a measure of the external constraints imposed either 

from higher-level shape information or user applied energy. For further details on the theoretical 

grounding of snakes and how these energies may be generically derived, the interested reader is 

referred to Blake and Isard (1998). 

An adjustable, generic form of the above snake can be modelled as (Williams and Shah, 1992): 

       ∫(                                            )    

In this form of the snake function, the first and second terms are first- and second-order 

continuity constraints and correspond to           in the original snake function. The third and 

last term of the snake function is equivalent to        and can measure some image quantity 

such as edge strength or image intensity. Finally, the weights       are used to control the 

relative influence of each term to the snake energy – thus they usually default to           

and are adjusted depending on the particular application. 

The greedy snake algorithm implemented in the REACT eye-tracker is derived from the work by 

Williams and Shah (1992) and is as follows. 
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The snake is initialized with the set of outmost points of the selected blob in the previous step, 

           . When considering new locations for a point of the snake, a 7x7 neighbourhood is 

considered. Since a very good initial approximation of the spline is given from the thresholding, 

            is computed such that the snake will not shrink but rather will favour points which 

have distance near the average distance between consecutive points: 

             ̅  |                    | 

 ̅ is the average distance between consecutive points of the snake,            is the candidate 

point for which             is being calculated,           is the previous point in the spline 

formation and |                    | is the Euclidean distance between the two. 

Curvature is computed at each point using a formula that has been shown (Williams and Shah, 

1992) to be computationally efficient as well as favour evenly spaced points: 

           | ⃗    ⃗    |
  |                          |

 
 

       is simply calculated from the image gradient (Williams and Shah, 1992). 

Before each term is substituted for the final snake energy calculation, they are normalized to [0, 

1.0]. Specifically,             and            are both divided by                   and 

               ) respectively whilst a different normalization function is used for        that 

accentuates the differences in gradient magnitude (Williams and Shah, 1992): 

      
  

   (      )                  

   (      )     (      )
 

Note that all     and     functions mentioned above are calculated within the candidate 

neighbourhood.  

The snake is iterated a predefined number of times and the new spline points define the refined 

pupil contour        {       }. The final output of this component comprises        and the 

pupil centre:  

  ̅                     
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IRIS RADIUS CALCULATION 

Locating the iris is a problem that has been tackled several times before (e.g. Wang et al., 2000; 

Sirohey et al, 2002; Chapter 3). However, a novel solution was required for the REACT eye-

tracker because the image formation is different to that of other setups and: 

 In many grey scale images that are illuminated using infrared light, the iris-sclera edge 

prominent in full-colour images is diminished (Figure 16). This can be easily explained if 

it is considered that the iris is coloured and its colour is reduced to grey-level. 

 While the iris-sclera edge is not preserved, infrared illumination will often accentuate the 

texture of the iris which can create strong edges that complicate the use of edge 

detectors. 

Even though it may have been possible to design the eye-tracker without locating the iris 

boundaries, doing so provides two significant advantages: 

(a) It provides a robust starting point for the challenging task of locating the eye corners. 

(b) Most importantly, it allows the eye-tracker to be extended to calculate the 3D gaze 

provided the camera is fully calibrated. One such approach is found in the remote eye-

tracker system developed by Wang et al. (2005): 

i. The iris radius and averages taken from anthropological data are used to estimate 

the radius of the eyeball. 

ii. Assuming a simple eye model where the eyeball is a sphere, an ellipse is fitted to 

the iris contour (the iris is more suitable for a remote system because it is much 

bigger than the pupil and because the pupil can hardly be distinguished from the 

iris without infrared illumination) from which two solutions of the corresponding 

3D circle are estimated using techniques outlined by Safaee-Rad, et al. (1992 cited 

by Wang et al., 2005). Additionally, an ellipse is fitted because the pupil and iris 

appear as a circle only if the person is looking straight ahead and the camera lens 

is parallel to the eye lens. 

iii. The correct solution is chosen by using a distance constraint based on the 

position of the eye-corners. 
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CAMERA-SHOT IMAGE (FULL-COLOUR CONVERTED 
TO GREYSCALE) 

 
SOBEL OUTPUT OF THE CAMERA-SHOT IMAGE 

 
EXAMPLE IMAGE EXTRACTED FROM THE EYE-
TRACKER SAMPLES 

 
SOBEL OUTPUT OF THE EYE-TRACKER IMAGE 

FIGURE 16: ILLUSTRATION OF THE EDGE-LOSS IN THE INFRARED IMAGES VERSUS A FULL-COLOUR 

IMAGE SHOT WITH A CAMERA FROM A DISTANCE. THE SCLERA IS THE WHITE PART OF THE EYEBALL. 

A similar task to the detection of the iris boundaries is cell segmentation (e.g. Zhou and Pycock, 

1997).  

Cells, much like the iris, are fairly uniform in terms of the pixels’ intensity levels on the inside. In 

a similar vein, cell image background is also uniform, like the sclera. Thus, the edge is not 

necessarily defined by the change in grey-level intensity, which is the basis of most edge-

detectors, but rather by a change in the uniformity over a range of pixels. 

In the original paper, in images of cells, dark regions are identified to locate the cell interiors. 

From the centre of each cell, several candidate boundary points are generated in regular 

intervals through 2π. For each radial, a set of feature measures are calculated, one of which is the 

edge strength; these features then combined and used to select the final boundary points from 

the candidates. The calculation of the edge strength is done in the same way here but its 
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application in identifying the iris boundaries is novel. Further, the modification to the algorithm 

presented below, specialises the edge strength algorithm for the REACT eye-tracker.  

As defined by Zhou and Pycock (1997), for a set of pixels M that are divided into two subsets m 

and M-m, the edge strength or maximum likelihood ratio mlr is 

    
 ̂ 

 ̂   ̂   
 

where  ̂  ,  ̂  and  ̂    is the standard deviation of the grey-level pixel sets M, m and M-m 

respectively. The edge strength is calculated for several different divisions of M and peaks are 

observed where an edge is prominent. 

In the original edge strength calculation algorithm by Zhou and Pycock (1997) shown above, the 

whole population is considered; however, it was empirically found that with eye image data, 

edges attributed to eyelashes and eyelids can severely alter the standard deviation of each 

population and thus make the algorithm fail or return erroneous (in this context) results. Thus, 

the original formula was modified to work within a constrained window such that for a line of 

pixels  , given a constant window size  , the edge strength at an index   within L is equal to: 

     
 ̂         

 ̂         ̂       
  

W can be chosen from averages taken from training data or adaptively to ½ the pupil radius. 

Thus, in this case       and    . The edge strength is calculated for a number of lines to 

the left and right of the pupil centre. The complete iris boundary detection algorithm is 

illustrated in Table 3 using pseudo-code. The selection of populations in the equations above is 

visually illustrated in Figure 17. 

The iris boundary detection algorithm is based on two fundamental assumptions: 

a) The subject is looking approximately straight ahead and therefore the vertical position of 

the pupil approximately coincides with the semi-major axis of the iris ellipse (the iris is 

closer to a circle but appears as an ellipse because of the camera angle and the de-

interlacing, like the pupil). 
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b) The length between the two iris boundaries is approximately constant for lines 

                                                   .            is the predefined 

number of consecutive lines examined by the algorithm. 

The first assumption simplifies the detection of the iris boundary while the second assumption 

increases the algorithm’s robustness by generating several matches and discarding outliers. 

As illustrated in Table 3, the algorithm is fundamentally simple and computationally efficient. A 

search window of size [                          
                    

 
]                 

is defined and the edge strength is calculated for each line using the equation given above for a 

window of size  . The local maxima are extracted as candidates for the iris boundary. 

 
FIGURE 17: EDGE STRENGTH POPULATIONS USED TO DETECT IRIS BOUNDARIES. THE EDGE STRENGTH 

IS CALCULATED ALONG SEVERAL HORIZONTAL LINES OF FIXED WIDTH ON SEVERAL POINTS WITHIN 

EACH LINE. AT EACH POINT, FIXED SIZE POPULATIONS (      AND    ) ARE USED TO 

CALCULATE THE EDGE STRENGTH. 

Outliers, or maxima that lie an abnormal distance from other candidates, are discarded using the 

algorithm illustrated in Table 4. In essence, the filtering algorithm discards any candidate points 

whose x-coordinate falls outside a specified confidence interval  . If the resulting set is empty 

after the filtering, the interval is progressively reduced using values         (99%, initial 

interval),     (95.5% interval),         (90% interval) and     (68.27% interval). Most 

often, the matches are congregated around the mean value; however, even in cases when the 

matches found are more spread out, reducing the confidence interval allows the algorithm to 

complete successfully, at the cost of a slightly less accurate result.  

Each step of the iris detection algorithm is visually illustrated in Figure 18. 
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TABLE 3: PSEUDO-CODE ILLUSTRATION OF THE IRIS BOUNDARY DETECTION ALGORITHM (LEFT 

BOUNDARY ONLY – THE ALGORITHM IS SIMPLY REVERSED FOR THE RIGHT BOUNDARY). 

Function FindLeftIrisBoundary 

const N  

const SearchLength 

const Iterations 

 

searchOffset = pupilContour.Width 

 

leftSearchBoundary = PupilCenter.X - searchLength 

rightSearchBoundary = PupilRectangle.Left - searchOffset 

 

for(y = [PupilCenter.Y - Iterations, PupilCenter.Y + Iterations]) 

 line = image[leftSearchBoundary ... rightSearchBoundary, y] 

 mlr = EdgeStrength(line, mlrWindowSize = N) 

 maxima = LocalMaxima(mlr) 

 

 matches.Add(LeftMost(maxima)) 

end 

 

filteredMatches = FilterOutliers(matches, 2.576 sigma) 

if( filteredMatches.Count == 0 ) 

 filteredMatches = FilterOutliers(matches, 2 sigma) 

if( filteredMatches.Count == 0 ) 

 filteredMatches = FilterOutliers(matches, 1.645 sigma) 

if( filteredMatches.Count == 0 ) 

 filteredMatches = FilterOutliers(matches, 1 sigma) 

if (filteredMatches.Count == 0 ) 

 filteredMatches = matches 

 

leftBoundary = Point(average(X in filteredMatches), PupilCenter.Y) 
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ORIGINAL 

 
THE INITIAL CANDIDATE POINTS GENERATED BY FINDING PEAKS IN 
EDGE STRENGTH 

 
THE FILTERED CANDIDATE POINTS 

 
FINAL OUTPUT 

FIGURE 18: ILLUSTRATION OF THE INTERMEDIATE STEPS OF THE IRIS DETECTION ALGORITHM. 
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TABLE 4: PSEUDO-CODE ILLUSTRATION FOR THE OUTLIER FILTERING FUNCTION. 

Function FilterOutliers(matches, Z) 

 

meanX = mean(X in matches) 

errorX = Abs(meanX - X in matches) 

sigma = stdev(errorX) 

 

if(Z * sigma < 1.0) return matches 

filteredMatches = matches where errorX < Z * sigma 

EYE CORNER DETECTION 

Locating the eye corners is probably the most significant challenge for the set of input images 

taken with the REACT eye-tracker. The problem of locating the eye-corners has been tackled 

before (Lam and Yan, 1996; Zhang, 1996; Feng and Yuen, 1998; Tian et al., 2000; Sirohey and 

Rosenfeld, 2001; Sirohey et al., 2002; Wang et al., 2005; Xu et al., 2008) but the systems in 

question operated, without exception, on a full-face, sometimes colour, image.  

In a close-up image, surprising as it may be, the additional level of detail creates several 

problems making it more difficult to locate the eye corners. With the higher-resolution of an 

otherwise low-cost camera, more noise is preserved7 and thus, corner detectors output many 

false positives. This includes random salt-and-pepper noise as well as structured noise such as 

shadows caused by the diffusion pattern of the illuminator and eyelashes.  

Furthermore, at this level of detail, the inner eye corner does not appear as a corner; as 

illustrated in Figure 19, the inner corner morphology can greatly vary between people. On the 

upper left-hand image of Figure 19, the inner corner morphology resembles that of a corner as 

defined in computer vision, it is approximately symmetrical to the outer corner and the tear 

gland is hidden. On the contrary, on the upper right-hand image of Figure 19, the inner corner is 

asymmetrical to the outer corner and the upper eyelid continues to extend all the way to the tear 

gland. In this case, because of the size of the eyelids, a corner detector would fail to detect the 

point as a corner and would generate several false positives, as shown in the lower row images of 

Figure 19. 
                                                             
 

7 For the difference of two consecutive frames (before de-interlacing) mean squared error values of ≅ 30 
are typical. 



80 
 

Detecting the location of the corners is also a significant task as it provides two static points of 

reference. In the current configuration, these two reference points are useful in two ways: 

(a) To calculate the principal axis by which to calculate the 2D gaze angle (next section). 

Especially in cases when the camera is rotated around the Y-axis (with Z- pointing 

upwards), this offers a correction of several degrees which significantly increases the 

accuracy of the eye-tracker. The aforementioned rotation of the camera can be a result of 

camera misplacement by the experimenter or slippage of the frame due to the weight of 

the cables or otherwise. 

(b) In long sequences where the absolute position of the eyeball centre is bound to change 

over time (e.g. frame slippage etc.), the eye corners can be used to detect whether a re-

initialization of the eye tracker is required. 

Additionally, if the eye-tracker was to be configured to detect the 3D gaze (using a fully 

calibrated camera), the eye corners are essential to disambiguating the 3D vector solution. For 

more details, the interested reader is referred to Wang et al. (2000). 

In order to ease the task of finding the eye corners, it is therefore necessary to remove some 

detail as well as noise before tackling the problem. A computationally efficient way that reduces 

image resolution as well as removes noise is Gaussian Pyramid Decomposition (Gonzalez and 

Woods, 2002). After a Gaussian filter with a 5x5 kernel is convolved over the original image, 

even-numbered rows and columns are discarded and the output image is a quarter of the size of 

the original. 

Because of the aforementioned differences in morphological structure between the two corners, 

the corner detection algorithm is specialized for the inner and outer corner separately. Table 5 

illustrates the pseudo-code for both versions of the algorithm. 

First and foremost, the input image is scaled down to ¼ of its original size using the Gaussian 

Pyramid Decomposition mentioned above. Then, the partial x- and y-derivative of the scaled 

image   are calculated: 

        |               | 

        |               | 
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For the y-derivative, non-maxima are suppressed locally using a 1x3 window. Whilst this is an 

irregular window (usually square windows are used for computer vision operations), it has been 

empirically found that it preserves the vertical edges better than a 3x3 window. This is most 

likely because the derivative is a one-column operation too. 

As mentioned earlier, slightly different algorithms are used to detect the inner and outer corner 

due to the different eye morphological structure evident at this image resolution. Both 

algorithms are however based on the same principle: 

1. It is assumed that the edges formed between the eyelids and the sclera are within the top 

  local maxima for a restricted window (   ). This assumption was empirically tested.  

2. A grouping process begins near the iris boundary previously found and continues 

outwards, grouping all local maxima that are connected, using an 8-connectivity criterion. 

3. The groups are searched for a set of two predefined patterns (shown in Figure 21) and if 

found, the grouping is terminated at that point. These patterns have been empirically 

found to occur when the lower eyelid edge is joined with another face line edge and thus 

the purpose of this step is to separate the two edges. 

4. The final corner is selected from the group (outer corner) or pair of groups (inner 

corner) that demonstrate the maximum derivative energy. The energy of a group of 

points   is calculated as: 

  

                

For a pair of groups      : 

 

                     

The added steps and differences between the two algorithms are summarized here and the 

complete algorithms are summarised using pseudo-code in Table 5. In Step 1 above, the search 

window includes both the upper and lower eyelid edges for the inner corner but only the lower 

eyelid edges for the outer corner. This is done for several reasons: 

a) For the inner corner: typically, the lower eyelid edge does not meet the upper eyelid 

edge. Thus, a distance criterion between the two edges has to be applied to find the 

corner. Further, often, the lower eyelid edge will be joined to a face line. The pattern 
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detection offered in the main algorithm will in some cases alleviate this problem but only 

in combination with the distance constraint is the algorithm robust. 

b) For the outer corner: typically, the camera is rotated around the vertical axis towards the 

outer corner thus making the eyelid-half on the inner corner side appear longer and the 

eyelid-half on the outer corner side appear shorter. Thus, the upper eyelid on the outer 

corner side is sloped several degrees more than the inner corner side. For this reason, 

grouping local maxima points on the top eyelid results in several disjointed groups. In 

order to robustly find the outer corner, pattern matching is combined with a refinement 

based on the partial x- derivative of the image. Since the upper eyelid edge and the lower 

eyelid edge always meet on the outer corner side, a strong maxima is created in the 

partial x-derivative image. This maxima is used to refine the corner in the last step and is 

found by searching a 10x5 window.  

Figure 22 illustrates the intermediate steps of the algorithm visually. 

CLUSTERING OF EYE-CORNER FEATURES 

To increase the robustness of the corner detection results which can be sensitive to noise, corner 

detection is applied over a group of   consecutive frames centered around the target frame and 

the resulting eye corners are calculated by the algorithm shown in Table 6. In essence, this 

clustering algorithm is an adaptation of the outlier filtering algorithm presented in Table 4 (used 

to filter outliers of the iris boundary candidates) but modified to take into account the y-

coordinate of each point. It was found that compared to no clustering or a weighted-sum 

clustering scheme, this algorithm performs the best (see evaluation in Chapter 5 for comparison 

chart). This strategy is only employed for the corner detection for two reasons. 

First, while false positives are output by the pupil detection algorithm also, the pupil often 

changes position even in the time-space of one field (1/2 frame or 1/59.94 sec). Thus, the only 

suitable strategy to filter out false positives is to employ a distance constraint, optionally with a 

motion predictor, as proposed in the pupil detection section. Also, the iris radius detection 

algorithm is accurate enough to not require this. In other words, only the corner detection 

algorithm is suitable for this kind of filtering. 
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Second, the most important reason however is how the pupil feature-point is used versus the 

corners. A false positive of the pupil position at a random point in time would only affect one 

sample; on the other hand, a false positive of the eye corners during the calibration of the eye-

tracker would affect several samples, until the eye-tracker re-initializes itself. With pupil 

detection, false positives occur rarely and only in extreme positions of the pupil. In contrast, false 

positive in eye corner detection can occur at any point in time, including the calibration frames 

thus making it of paramount importance to filter out false positives of the eye corners. 
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FIGURE 19: INNER EYE CORNER MAY OR MAY NOT APPEAR AS A CORNER. EXAMPLE IMAGES FROM TWO 

DIFFERENT SUBJECTS (UPPER ROW) AND THE RESPECTIVE OUTPUT FROM A CONVENTIONAL CORNER 

DETECTOR (LOWER ROW). 

 

 

 

FIGURE 20: EXAMPLE OF GAUSSIAN PYRAMID DECOMPOSITION. 
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FIGURE 21: PREDEFINED SEARCH PATTERNS FOR THE OUTER CORNER SEARCH. THE PATTERNS ARE 

REVERSED FOR THE INNER CORNER. 

 
ORIGINAL 

 
GROUPINGS GENERATED BY APPLYING A DISTANCE CRITERION TO 
LOCAL MAXIMA OF THE Y-DERIVATIVE IMAGE AFTER NON-
MAXIMA HAVE BEEN SUPPRESSED (SCALED UP X4) 

 
SELECTED GROUPINGS (SCALED UP X4) 

 
FINAL OUTPUT 

FIGURE 22: ILLUSTRATION OF THE INTERMEDIATE-STEPS OF THE CORNER-DETECTION ALGORITHM 
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TABLE 5: PSEUDO-CODE ILLUSTRATION FOR THE CORNER DETECTION ALGORITHM. 

Function PreProcess 

 

pyrDownImg = PyrDown(PyrDown(source image)) 

 

derivX = partial x- derivative of pyrDownImg 

derivY = suppressNonMaxima(partial y- derivative of pyrDownImg) 

 

///// 

 

Function DetectInnerCorner 

 

const SearchOffsetX 

const SearchWindowHeight 

const PairingDistance 

const MinimumGroupSize 

 

searchInitX = InnerIrisBoundary.X - SearchOffsetX 

searchTopY = leftIrisBoundary.Y - 0.25 * SearchWindowHeight 

searchBottomY = leftIrisBoundary.Y + 0.75 * SearchWindowHeight 

 

allMaxima = list() 

while(searchInitX >= 0)     

 sample = derivY [x, searchTopY : searchBottomY]      

 maxima = FindLargestValues(sample, N = 4, distance > 1) 

 allMaxima.Add(maxima) 

 x-- 

end 

 

initialGroups = MaximaToGroups(allMaxima) 

groups = initialGroups where n(group) >= averageSize(initialGroups) 

 

for each(group in groups) 

 patternIndex = find(pattern1 or pattern2 in group) 

 if found  

     remove points in group with index <= patternIndex 

 end 

end 

                     

pairs = select pairs of groups  

    where (group1 contains point p1 and group2 contains point p2  

               such that dist(p1, p2) <= PairingDistance) and 

          group1.Size > MinimumGroupSize and  

          group2.Size > MinimumGroupSize 

 

candidates = select from pairs where selectFunction: 

 pairLeftMostPoint = LeftMostPoint(group1).X, 

                  average(LeftMostPoint(group1), LeftMostPoint(group2)) 

  

 if pairLeftMostPoint.Y < leftIrisBoundary.Y 

     discard 
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 end 

 

 if pairLeftMostPoint.X >= leftIrisBoundary - 0.75 * SearchWindowHeight 

     discard 

 end 

end 

 

groupMatch = select from candidates where energy = max: 

 energy = sum(derivY along group1) * sum(derivY along group2) 

end 

 

corner = LeftMostPoint(groupMatch[group1]).X,                 

                      average(LeftMostPoint(groupMatch[group1]),                        

                              LeftMostPoint(groupMatch[group2])) 

 

///// 

 

Function DetectOuterCorner 

 

const SearchOffsetX 

const SearchWindowHeight 

const searchWindowLength 

const minimumGroupSize 

 

searchInitX = OuterIrisBoundary.X + SearchOffsetX 

searchTopY = rightIrisBoundary.Y 

searchBottomY = rightIrisBoundary.Y + SearchWindowHeight 

 

allMaxima = list() 

searchX = searchInitX 

while(searchX <= searchInitX + searchWindowLength)     

 sample = derivY [x, searchTopY:searchBottomY]      

 maxima = FindLargestValues(sample, N = 2, distance > 3) 

 allMaxima.Add(maxima) 

 x++ 

end 

 

initialGroups = MaximaToGroups(allMaxima) 

groups = initialGroups where n(group) > minimumGroupSize and 

                          group.points.Y > searchTopY 

 

groupMatch = select from groups where energy = max: 

 energy = sum(derivY along group) 

end 

 

patternIndex = find(pattern1 or pattern2, groupMatch) 

if found 

 cornerCandidate = group[patternIndex] 

else 

 cornerCandidate = group.last() 

end 
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derivXBlock = GetBlock(derivX, size = 10x5, center = cornerCandidate) 

corner = where derivXBlock = max 

 

///// 

 

Function MaximaToGroups 

 

groups = list() 

 

while(maxima has elements) 

 select currentPoint 

 

 search groups where (p in groups) is connected to (currentPoint) 

 if found    

     add currentPoint to group match 

 else 

     create new group with currentPoint 

 end 

end 

 

 

TABLE 6: PSEUDO-CODE ILLUSTRATION OF THE CALCULATION OF THE EYE CORNERS USING A CLUSTER 

OF RESULTS. 

Function FilterOutliers2(matches, Z) 

 

mean = mean(matches) 

error = dist(mean - matches) 

sigma = stdev(error) 

 

if(Z * sigma < 1.0) return matches 

filteredMatches = matches where error < Z * sigma 
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CALCULATION OF THE 2D GAZE VECTOR 

In this research work, the 2D gaze vector is defined as the vector between the pupil position in 

the source image when the subject is looking straight ahead and the current pupil position. This 

is not to be confused with the 3D gaze vector defined as the vector between the subject’s eye and 

the point the subject is looking at in 3D space or a surface such as a screen (e.g. Morimoto and 

Mimica, 2005). 

Calculating a 3D gaze vector would have required a fully calibrated camera (Wang et al., 2005). 

Even though there are modern means of camera calibration that greatly simplify the process (see 

Bouguet, 2008), it is still too involved to be performed by the user of a system like the REACT 

eye-tracker. For this reason and given that when investigating non-visual eye-movements 3D 

gaze offers little or none additional information over 2D gaze, it was decided that 2D gaze 

calculation would suffice.  

As mentioned in an earlier chapter, simplicity was a key requirement that influenced the design 

and development of the REACT eye-tracker. Thus, a complex calibration procedure was 

intentionally avoided and the eye-tracker requires only one calibration point – that of the subject 

looking approximately straight ahead.  

This calibration point can be provided on-line (in real-time while recording and tracking at the 

same time) or off-line (after the video has been recorded) and initializes the tracker by 

calculating the initial pupil position    and contour  , the iris radius   and the eye corners 

locations     and    . 

At each point in time, the 2D gaze vector is calculated as follows: 

 If the current pupil position    falls within the initial pupil contour  , it is assumed that 

the subject is looking straight ahead. 

 Otherwise: 

o A reference x-axis and corresponding y-axis are established using the line that 

connects the two corners     and    . 

o The centre of the reference axis’s is translated to coincide with the initial pupil 

position   . 
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o The 2D gaze vector between           and           is calculated as well as the 

gaze angle  : 

  tan  
     

     
 

The above process is visually illustrated in Figure 23 and the pseudo-code is presented in Table 

7. 

When the tracker is set to process long video sequences, it re-calculates the position of the 

corners when the subject is looking straight, i.e. when the current pupil position is within the 

initial/calibrated pupil contour. This allows the tracker to adjust to changes of the frame position 

on the subject’s head and semi-permanent changes in the appearance of the eye (such as 

squinting). If a significant change in the location of the eye corners is detected, the initial pupil 

position and reference axis centre    is updated to the new value    such that |      |  

|      | and |      |  |      |. 

The single subject calibration point required by the eye-tracker offers the significant advantage 

that it can even be acquired without the user’s explicit knowledge. For example, the interviewer 

may incite the subject to look forward and provide an audio signal that will allow the frames in 

question to be marked for calibration, off-line. On the other hand, it can be a source of error but if 

necessary, more complex calibration schemes can be incorporated easily, at the cost of additional 

complexity and perhaps the increase of invasiveness (by making the subject more self-conscious 

of his/her eyes being tracked). For example, two calibration points     and    may be acquired by 

asking the subject to look left and right (on the baseline) and classifying each eye-movement as 

follows: 

 On the x-axis (left/middle/right) by the horizontal distance between the pupil position 

and   ,   . 

 On the y-axis (down/middle/up) by the vertical distances between a) the pupil position 

and    or    and b) the pupil position and the corresponding eye corner. 

It is important to mention here that the eye corners have been used as reference points to 

calculate gaze only in remote systems before (Zhu and Yang, 2002; Valenti et al., 2008). The usual 
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approach is that of using the glint as the point of reference which introduces the problem of the 

glint falling into the sclera during extreme eye-movements thus making it very hard to detect. 

As explained earlier, the problem of locating the corners is significantly different for the case of a 

head-mounted setup as the image is taken close-up and is much more detailed which is in fact a 

disadvantage. For calculating gaze, a model-based approach such as the system by Matsumoto 

and Zelinsky (2000), which calculates the 3D centre of the eyeball as the middle point between 

the two corners and then calculates the 3D vector between the eyeball centre and the pupil 

centre, would not be valid for the system presented in this thesis. As explained in the corner 

detection section, the appearance of the eye corners significantly is changed versus a remote 

system and the eye corners no longer appear as symmetrically placed. In other words, the 

distance between the inner corner and the eyeball centre would not be equal to the distance of 

the outer corner and the eyeball centre. Thus, a significantly more elaborate 3D eye model would 

need to be used, in coordination with a more elaborate subject calibration that determines these 

distances. 

 

FIGURE 23: CALCULATION OF THE 2D GAZE VECTOR. 

TABLE 7: PSEUDO-CODE ILLUSTRATION OF THE 2D GAZE VECTOR CALCULATION. 

Function CalcGaze(InitPupilPos, InitContour, Corners, PupilPos) 

 

if(InitContour.Contains(PupilPos)) 

 return SubjectIsLookingStraightAhead 

 

cornerLine = FitLine(Corners.Inner, Corners.Outer) 

axisAngle = cornerLine.Theta 

gazeVector = PupilPos - InitPupilPos 

 

return theta(gazeVector) + axisAngle 
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COMPUTATIONAL COMPLEXITY 

The computational complexity of the algorithms presented in this thesis is often mentioned and 

this section aims to specifically discuss the basic time complexity of each component and their 

sum. 

The pupil detection is involves estimating the pupil contour (thresholding, connected 

components labelling and blob ellipse fitting) and refining it through the use of a snake. For N 

number of pixels, thresholding requires one comparison and one assignment per pixel, thus 

being of     complexity. During connected components labelling, the image is scanned twice 

and it thus requires approximately     operations, being also of      complexity. The time 

taken by the ellipse fitting that takes place after labelling does not depend on the number of 

pixels but on the number of labels or blobs which is small compared to the number of pixels and 

thus its complexity is approximately     . Refining the contour using a snake also does not 

depend on the number of pixels but on the number of the points in the contour; since this 

number is always very small compared to the number of pixels and the snake is iterated a 

constant amount of times, it is also of      complexity. Overall, detecting the pupil is of      

complexity. 

When calibrating the eye-tracker, other than the pupil, both the iris and eye corners are detected. 

Calculating the iris radius also requires a very small amount of operations. The edge strength is 

calculated over a fixed number of lines L and across a fixed width W for each line; its calculation 

is equivalent to two multiplications and three calculations of standard deviation (approximately 

    number of additions and m number of multiplications for a sample of size m) of a small 

number of pixels compared to the total number of pixels N and therefore the total complexity can 

be approximated by     . Filtering the outliers requires an approximately constant time and 

therefore is of complexity     . 

When detecting the eye corners, the most significant operation is the Gaussian Pyramid 

Decomposition (convolution of 5x5 Gaussian kernel and subsampling) whose complexity is 

            . Relatively to this, the maxima selection and grouping that follows is of 

constant complexity and thus the total complexity of the corner detection is     . 
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Thus, for calibration frames where both iris detection and corner detection takes place, the 

complexity is                    . 

 

 

 

 



TABLE 8: THE CALIBRATION FRAMES FOR SUBJECTS 1-9 WITH THE FEATURE POINTS ILLUSTRATED. 

  

  

  

  

 

 



TABLE 9: RANDOMLY SELECTED FRAMES FOR SUBJECTS 1-9 WITH THE PUPIL MARKED BY THE EYE-TRACKER (ONE SUBJECT PER ROW). 
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CHAPTER 5: FEATURE EXTRACTION EVALUATION 

Given that the REACT eye-tracker is feature-based, it makes sense to evaluate its performance in 

extracting these features by calculating the Euclidean distance between each feature point as 

extracted by the eye-tracker and the feature point as manually marked by the author. 

Thus, on each intermediate step of the 2D gaze calculation (detecting the pupil, calculating the 

iris radius and locating the corners), the appropriate set of frames was selected from the test 

video database and the errors were measured. To render that possible, a software application 

that allows for relatively easy manual marking of feature points on frames was written and used. 

The set of manually marked frames will also be referred to as the validation data set. 

It is desirable to assess the performance of each component separately and thus, for the iris 

radius and corners extraction algorithms that depend on previous outputs (pupil location and 

pupil location, iris radius respectively), they were taken from the validation data set such that 

there is no interference from errors from other components.  The validation test data set was 

composed of nine (9) different subjects, of which two subjects were female and seven male, one 

subject was Black, one Asian and the rest seven Caucasian. Finally, two subjects were in the 35-

25 group and the other seven subjects were in the 25-35 age group. 

Beyond assessing each individual component separately, it is also desirable to assess the 

performance of the eye-tracker as a whole. Thus, the 2D gaze angle calculation algorithm was 

evaluated by comparing the 2D gaze angle calculated using inputs (pupil position, iris radius, 

corners locations) as calculated by the eye-tracker versus using inputs from the validated data 

set. 

Finally, in order to assess the usability performance of the eye-tracker as hardware, a simple 

questionnaire was designed and distributed to the subjects that have used the eye-tracker. 

The evaluation of the REACT eye-tracker can thus be split into the following parts: 

1. Evaluation of the pupil detection algorithm 

2. Evaluation of the iris boundary detection algorithm 

3. Evaluation of the corner detection algorithm 
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4. Evaluation of the 2D gaze vector calculation algorithm 

5. Evaluation of the eye-tracker hardware usability 

TESTBED AND SAMPLE VIDEO COLLECTION 

Collecting sample videos was an important process in order to develop, test and evaluate the 

REACT eye-tracker. In order to do this, a software application was designed that projects points 

with known locations on a screen. By placing the subject at a fixed distance from the screen and 

aligning the centre of the projected points and the subject’s direct point of gaze, it is possible to 

consistently generate extreme eye-movements that cover regular intervals of the complete 360° 

view. 

The aforementioned test bed was implemented with a NEC MT1065 projector which is 

configured with a special mirror to project images from the back of an 84” screen.  

The latter configuration was essential to collecting video samples successfully from this test bed: 

 The subject needs to be located fairly close to the screen such that it is possible to 

generate “extreme” eye-movements outside of the normal field of view, as a simulation of 

eye-movements that occur during thinking. For the same reason, running the test on a 

regular 17” desktop screen would not suffice as the generated eye-movements would be 

restricted in a narrow field of view and the screen is required to be large. 

 Using a regular ceiling-mounted projector configuration, it is impossible to display the 

screen correctly at the same time as recording the subject’s eye-movements as part 

projector’s beam would be occluded by the subject’s head and shoulder. Thus, projecting 

to the screen from the back was absolutely vital. 
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FIGURE 24: SUBJECT STANDING IN FRONT OF THE PROJECTOR BEFORE RUNNING A RECORDING 

SESSION. 

The test bed software was designed to display a set of twelve points from an imaginary circle that 

fills the screen as shown in Figure 24. If the centre circles coincides with the centre of a Cartesian 

plane, then the points start at 0° and continue at 30° increments to complete a full circle. The 

display order of the points is randomized to simulate a more realistic testing environment for the 

eye-tracker and prevent the subjects moving their eyes in anticipation of the next eye-movement. 

At the same time as displaying the points on screen, the video input from the eye-tracker is being 

recorded to disk. The synchronization is as follows: 

 Subject calibration phase. All twelve points and the centre of the circle are displayed all at 

once. The researcher asks subjects to indicate where the centre of the circle ought to be 

such that it is the focus of their direct gaze. Then, subjects are asked to make sure they 

can look at each and every point without moving their head or straining their eyes. If 

necessary, the circle radius is adjusted to allow subjects to keep their head still and 

comfortably view all the points throughout the recording. Video recording is off during 

this phase. When subject are ready, they are asked to press a key to move on to the next 

phase. 

 Tracker calibration phase. Once subject calibration is completed, the centre of the circle is 

displayed once again and subjects are asked to press a key when their eyes are focused 

on the centre point. This is done such that the first recorded eye-movement is that of the 

person looking straight ahead and the tracker may be calibrated. At the beginning of this 

phase, video recording is initiated. On key press, the next phase is initiated. 
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 Circle phase. The twelve points are displayed one by one; subjects are asked to focus on 

each point and press a key when ready. When the key press occurs, the next point is 

displayed. When all points have been displayed, the key press initiates the last phase. 

 Final phase. This phase is identical to the Tracker calibration phase and was added in case 

consistency checks between the two pupil positions (original and repeated) were later 

required. At the end of this phase, video recording is turned off and the software exits.  

At the same time as recording the video from the eye-tracker, the coordinates of the point 

currently displayed on screen are also recorded. Keystrokes may be detected by the change of 

displayed point. Figure 25 illustrates the recording software in operation. 

  

FIGURE 25: THE RECORDING SOFTWARE IN OPERATION; CALIBRATION (LEFT) AND RECORDING 

(RIGHT). 

EVALUATION OF THE PUPIL DETECTION ALGORITHM 

In order to evaluate the robustness and the accuracy of the pupil detection algorithm, the pupil 

was manually marked in a set of nine (9) sample videos from nine (9) different subjects, giving a 

total of 12,334 frames. The pupil was marked on each frame by manually drawing an adjustable 

transparent ellipse over the pupil and then automatically calculating the centre of the drawn 

ellipse as the pupil centre, as illustrated in Figure 26. 

The tracker was set to process all the frames in the above data set and the error was quantified 

as the Euclidean distance between the calculated pupil position and the manually marked 

position. The errors were then classified to negligible, acceptable and unacceptable to aid the 

interpretation of the results. As negligible were considered any errors less than or equal to 2 



102 
 

pixels because it is estimated that errors up to 2 pixels may be a result of the manual marking; 

despite the use of manual software that eases the marking task, it is impossible to mark the data 

set 100% accurately as a) in some cases the exact pupil boundaries cannot be distinguished and 

b) the boundaries are often not bound to one single pixel. As acceptable were considered any 

errors between 2 and 8 pixels and as unacceptable any errors over 8 pixels. 

 

FIGURE 26: MANUAL MARKING OF THE PUPIL CONTOUR AND LOCATION IN THE VALIDATION VIDEOS.  

Table 10 and Table 11 below display the error and error classification statistics. Specifically, in 

Table 10, the first column designates the test sample, the second column displays the processed 

number of frames for the particular sample, the third and fourth column the average error and 

standard deviation for the sample respectively and the fifth column displays the maximum error 

across the frames of the particular sample. Finally, the last row of Table 10 shows the average 

error, standard deviation and maximum error for the whole data set taken together. In Table 11, 

a similar format is used; the sample is shown on the first column, the total number of frames on 

the second column, followed by the number of frames of each class and the number of frames 

that failed to process. The final row of Table 11 shows the total number of frames for each class, 

both as a cardinal number and a percentage. 

As can be seen from the tables above, the pupil detection algorithm performs quite well despite 

using a global threshold; on average, the error is 2.04 ± 3.32 pixels. The good performance of the 

algorithm can be attributed to the use of infrared lighting and the accompanied dark-pupil effect.  
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Poor performance may only be observed in sample Subj09 where the error for 326 of the 1361 

total frames has been classified as unacceptable. This was due to poor placement of the camera; 

specifically, the camera was erroneously placed almost directly in front of the eye. Not only does 

that obscure the subject’s vision more than placing it pointing upwards but it creates a reflection 

similar to that of the bright-pupil effect introduced in Chapter 3 (and similar to the red-eye effect 

seen in photographs) which causes the thresholding and snake to perform poorly, as shown in 

Figure 27. 

The maximum error is quite large (over 20 pixels) for test sequences except Subj02 and Subj08; 

this is simply due to a failure of the pupil detection algorithm. In rare cases, the fit error 

calculated for each ellipse favours an image blob that is not the pupil, as shown in Figure 28. 

However, as shown in Table 12  which illustrates the errors for each test sequence as bar graphs, 

this is extremely rare (in the order of 2-3 frames per sequence, for most sequences). Additionally, 

such high errors rarely occur for two consecutive frames. Thus, such errors could easily be 

filtered when tracking over time by defining a maximum pupil movement between frames and 

discarding frames that exceed this value or alternatively by using a polynomial model to predict 

the current pupil position based on the movement from the last few frames and discarding 

frames for which the tracked position does not fit the model. As explain in Chapter 4 however, 

this is not as important for the pupil as it is for the eye corners. 

Finally, where the eye-tracker has failed to detect the pupil (11 of 12,334 frames or 0.09%), it 

means that after filtering by size, no connected components were found in the image. If this effect 

were of any significant occurrence, it could be remedied by lowering the minimum blob size 

threshold if no components were found with the default setting. 
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TABLE 10: PUPIL EVALUATION - ERROR STATISTICS, IN PIXELS. 

Sample Frames Average σ Maximum 

Subj01 2088 1.06 1.76 71.22 

Subj02 1238 1.19 0.88 5.80 

Subj03 1372 2.42 3.24 87.91 

Subj04 927 2.32 1.97 23.53 

Subj05 1259 1.83 3.28 75.70 

Subj06 1308 1.94 3.67 73.09 

Subj07 1383 1.38 4.23 109.68 

Subj08 1398 1.66 1.21 7.94 

Subj09 1361 5.15 5.09 38.34 

Overall 12334 2.04 3.32 109.68 

 

 

 

TABLE 11: PUPIL EVALUATION - ERROR CLASSIFICATION STATISTICS, NUMBER OF FRAMES. 

Sample Frames Negligible Acceptable Unacceptable Failed 

Subj01 2088 1861 225 2 0 

Subj02 1238 1039 199 0 0 

Subj03 1372 771 557 44 0 

Subj04 927 493 425 9 1 

Subj05 1259 927 312 20 10 

Subj06 1308 910 376 22 0 

Subj07 1383 1162 217 4 0 

Subj08 1398 993 405 0 0 

Subj09 1361 509 526 326 0 

Total 12334 (100%) 8665 (70.25%) 3242 (26.28%) 427 (3.46%) 11 (0.09%) 
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FIGURE 27: ILLUSTRATION OF POOR CAMERA PLACEMENT CAUSING PUPIL DETECTION TO GIVE HIGH 

ERRORS. SUCCESSFUL INITIALISATION IS SHOWN ON THE LEFT WHILE PARTIAL BRIGHT PUPIL EFFECT 

IS SHOWN ON THE RIGHT (SAMPLE: SUBJ09). 

 

 

 

 

 

FIGURE 28: EXAMPLE OF A FAILED SELECTION OF THE PUPIL DETECTION ALGORITHM. 

 



TABLE 12: BAR GRAPHS OF THE PUPIL DETECTION ALGORITHM ERROR FOR EACH TEST SEQUENCE. 
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EVALUATION OF THE IRIS BOUNDARY DETECTION ALGORITHM 

The iris boundary detection algorithm was evaluated in a similar way to the pupil detection 

algorithm. The iris boundaries were manually marked in the same sample set as used for the 

pupil detection algorithm (only frames where the subject is looking straight ahead were used; as 

already mentioned in Chapter 4, this is a requirement for the iris boundary detection algorithm – a 

total of 1,856 frames) and the iris radius was automatically extracted from the marked 

boundaries as the ½ of the difference between the two x-coordinates. Figure 29 illustrates the 

software used to mark the iris test data set. 

The tracker was set to process all the frames in the above data set and the error was quantified 

as the difference between the calculated iris radius and the iris radius calculated from the 

manually marked boundaries. The errors were then classified to negligible, acceptable and 

unacceptable to aid the interpretation of the results. As negligible were considered any errors 

less than or equal to 2 pixels because it is estimated that errors up to 2 pixels may be a result of 

the manual marking; despite the use of manual software that eases the marking task, it is 

impossible to mark the data set 100% accurately as a) in some cases the exact iris boundaries 

cannot be distinguished and b) the boundaries are often not bound to one single pixel. As 

acceptable were considered any errors between 2 and 8 pixels and as unacceptable any errors 

over 8 pixels. 

 

FIGURE 29: MANUAL MARKING OF THE IRIS BOUNDARIES.  
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Table 13 and Table 14 below display the error and error classification statistics. Specifically, in 

Table 13, the first column designates the test sample, the second column displays the processed 

number of frames for the particular sample, the third and fourth column the average error and 

standard deviation for the sample respectively and the fifth column displays the maximum error 

across the frames of the particular sample. Finally, the last row of Table 13 shows the average 

error, standard deviation and maximum error for the whole data set taken together. In Table 14, 

a similar format is used; the sample is shown on the first column, the total number of frames on 

the second column, followed by the number of frames of each class and the number of frames 

that failed to process. The final row of Table 14 shows the total number of frames for each class, 

both as a cardinal number and a percentage. 

As can be seen from the tables above, the iris radius detection algorithm performs very well and 

consistently; in all of the test sequences, the error is never high enough to be classified 

unacceptable. On average, the iris radius error is 2.11 ± 1.42 pixels and the maximum error 

across all sequences is less than 8 pixels, 7.92 pixels to be exact.  

Table 15 shows the error distribution for each test sequence using bar graphs.  
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TABLE 13: IRIS EVALUATION - ERROR STATISTICS, IN PIXELS. 

Sample Frames Average σ Maximum 

Subj01 411 2.24 1.57 7.91 

Subj02 189 1.29 0.60 2.76 

Subj03 282 3.45 1.39 7.92 

Subj04 44 0.54 0.48 2.07 

Subj05 169 0.79 0.47 1.95 

Subj06 115 0.89 0.72 2.92 

Subj07 210 2.43 1.29 6.43 

Subj08 235 1.62 0.55 3.44 

Subj09 201 3.17 0.72 4.88 

Overall 1856 2.11 1.42 7.92 

 

 

 

TABLE 14: IRIS EVALUATION - ERROR CLASSIFICATION STATISTICS, NUMBER OF FRAMES. 

Sample Frames Negligible Acceptable Unacceptable Failed 

Subj01 411 208 203 0 0 

Subj02 189 166 23 0 0 

Subj03 282 38 244 0 0 

Subj04 44 43 1 0 0 

Subj05 169 169 0 0 0 

Subj06 115 102 13 0 0 

Subj07 210 81 129 0 0 

Subj08 235 181 54 0 0 

Subj09 201 8 193 0 0 

Total 1856 (100%) 996 (53.66%) 860 (46.33%) 0 (0%) 0 (0%) 
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TABLE 15: BAR GRAPHS OF THE IRIS DETECTION ALGORITHM ERROR FOR EACH TEST SEQUENCE. 
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EVALUATION OF THE CORNER DETECTION AND CLUSTERING ALGORITHMS 

The evaluation of the corner detection algorithm has been a significant challenge for the simple 

reason that the corners will change appearance in coordination to the subject’s eye morphology 

over time (both momentary e.g. blinks or eyelid movement because of eye movement as well as 

more lasting changes e.g. squinting). In other words, the corners may appear to have moved if the 

subjects squints or simply looks in a different direction and their eyelids move significantly. For 

the evaluation data set, frames of the subject is looking straight ahead (as already mentioned in 

Chapter 4, this is a requirement for the iris boundary and corner detection algorithms) were 

included and frames where the corners could not be clearly marked were excluded, giving a total 

of 1,856 frames. 

 In some cases, because of the particular eye morphology of the individual subjects, there were 

two candidates for the inner eye corner, as shown in Figure 30. As the right-most candidate 

changes appearance more often than the left-most candidate and in order to be consistent 

across-subjects, the left-most candidate was always marked thus marking the point nearest to 

the tear gland as the inner eye corner. Figure 31 illustrates the marking software in operation. 

The tracker was set to process all the frames in the above data set and the error was quantified 

as the Euclidean distance between the calculated corners and the manually marked corners. The 

errors were then classified to negligible, acceptable and unacceptable to aid the interpretation of 

the results. As negligible were considered any errors less than or equal to 4 pixels. As acceptable 

were considered any errors between 4 and 10 pixels and as unacceptable any errors over 10 

pixels. 

Slightly higher thresholds (4 pixels versus 2 pixels for negligible and 10 pixels versus 8 pixels for 

acceptable/unacceptable) were used for the evaluation of the eye corners detection algorithm for 

several reasons: 

a) Just like the pupil and iris evaluation, manually marking these positions over several 

hundreds of frames is a somewhat error-prone process; there is no objective means to 

mark the exact location of the points in question and as careful as one may be, errors will 

occur in such a repetitive and tedious task. This problem is even more evident with the 
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marking of the eye corners as their appearance is much less distinct than the pupil and 

iris. 

b) The eye corners detection algorithm subsamples the input images to ¼ of its original size 

before eye corner detection takes place and later up samples the result by multiplying the 

eye corner locations by 4. Thus, an error of   pixels in the scaled-down image will be 

equivalent to     pixels movement in the original image. As such, it is reasonable to 

consider deviation of the eye corner detection of 4-10 pixels as acceptable. 

In practice, it is hypothesised that the manual marking errors are higher than assumed but the 

above low-threshold values were used for the classification because this cannot be proved 

objectively and to produce conservative error measurements. 

 

FIGURE 30: "TRUE" INNER EYE CORNER MAY HAVE TWO CANDIDATES, SHOWN IN RED. 

 

FIGURE 31: MANUAL MARKING OF THE EYE CORNERS.  
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Table 16, Table 18 and Table 17, Table 19 below display the error and error classification 

statistics for the inner and outer corner respectively. As before, in the error statics table, the first 

column designates the test sample, the second column displays the processed number of frames 

for the particular sample, the third and fourth column the average error and standard deviation 

for the sample respectively and the fifth column displays the maximum error across the frames 

of the particular sample. Finally, the last row shows the average error, standard deviation and 

maximum error for the whole data set taken together. In the error classification statistics table, 

the sample is shown on the first column, the total number of frames on the second column, 

followed by the number of frames of each class and the number of frames that failed to process. 

The final row shows the total number of frames for each class, both as a cardinal number and a 

percentage. 

Detecting the location of the eye corners is the hardest problem to tackle and this is indeed 

reflected in the error measurements from the corner detection, as shown in the tables above. 

Both the inner and outer corner detection algorithm show very similar error measurements; 

8.32 ± 5.78 pixels and 8.41 ± 5.40 pixels respectively. If it is considered that the algorithm 

subsamples the original image to a quarter of its size, this corresponds to 2-3 pixels of error in 

the down-sampled image, which is an acceptable result. The error is amplified when the result is 

up-sampled.  

The maximum error across the whole data set is 50.24 pixels and 44.38 pixels for the inner and 

outer corner detection respectively. This shows that the algorithm will in some cases output false 

positives and this is the reason that the clustering algorithm was integrated into the corner 

detection as explained in Chapter 4. 

The evaluation of the corner detection after clustering has been applied was performed in the 

same manner as the corner detection algorithm and the results are presented in tables 18 

through 21. As can be seen, there is a significant reduction in error with the average error being 

7.41 ± 3.78 pixels for the inner corner and 6.49 ± 3.21 pixels for the outer corner. Additionally, by 

filtering outliers (false positives), the maximum error was reduced to 16.76 pixels and 25.83 

pixels respectively. 

Figure 32 and Figure 33 graphically illustrate how different clustering methods and settings 

affect the average error measurements for the inner and outer corner detection respectively. The 



122 
 

clustering methods tested are as outlined in Chapter 4 (no clustering, weighted sum clustering, 

outliers filtering). 

As can be seen in this comparison:  

 Both clustering algorithms offer a significant improvement versus no clustering, 

especially when the error is high.  

 In cases of small error, the two clustering methods perform similarly. 

 In cases of larger error, the clustering method used in the eye-tracker performs better 

than the weighted sum clustering. 

 In most cases, there are no significant improvements offered for     . 
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TABLE 16: CORNER DETECTION EVALUATION (INNER CORNER) - ERROR STATISTICS, IN PIXELS. 

Sample Frames Average σ Maximum 

Subj01 411 5.18 5.55 44.18 

Subj02 189 9.27 3.44 23.60 

Subj03 263 13.99 4.33 35.00 

Subj04 44 11.99 6.17 23.43 

Subj05 162 8.01 9.16 50.24 

Subj06 109 9.17 4.63 30.08 

Subj07 210 8.01 4.42 22.02 

Subj08 231 6.59 3.35 21.09 

Subj09 201 7.75 3.47 21.02 

Overall 1820 8.32 5.78 50.24 

 

 

 

TABLE 17: CORNER DETECTION EVALUATION (INNER CORNER) - ERROR CLASSIFICATION STATISTICS, 

NUMBER OF FRAMES. 

Sample Frames Negligible Acceptable Unacceptable Failed 

Subj01 411 221 161 29 0 

Subj02 189 9 128 52 0 

Subj03 263 0 100 163 19 

Subj04 44 0 24 20 0 

Subj05 162 34 114 14 7 

Subj06 109 0 85 24 1 

Subj07 210 31 138 41 0 

Subj08 231 0 180 51 4 

Subj09 201 25 104 72 0 

Total 1820 (98.33%) 320 (17.29%) 1034 (55.86%) 466 (25.18%) 31 (1.67%) 
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TABLE 18: CORNER DETECTION EVALUATION (OUTER CORNER) - ERROR STATISTICS, IN PIXELS. 

Sample Frames Average σ Maximum 

Subj01 411 9.53 3.24 26.07 

Subj02 189 8.82 3.64 21.37 

Subj03 282 6.57 3.58 22.20 

Subj04 44 11.27 4.56 25.61 

Subj05 169 13.28 9.34 33.61 

Subj06 110 7.47 4.62 38.63 

Subj07 210 9.60 5.24 26.92 

Subj08 235 6.54 6.53 44.38 

Subj09 201 5.02 1.50 8.94 

Overall 1851 8.41 5.40 44.38 

 

 

 

TABLE 19: CORNER DETECTION EVALUATION (OUTER CORNER) - ERROR CLASSIFICATION STATISTICS, 

NUMBER OF FRAMES. 

Sample Frames Negligible Acceptable Unacceptable Failed 

Subj01 411 11 263 137 0 

Subj02 189 5 146 38 0 

Subj03 282 63 203 16 0 

Subj04 44 0 30 14 0 

Subj05 169 0 98 71 0 

Subj06 110 2 95 13 0 

Subj07 210 7 132 71 0 

Subj08 235 72 150 13 0 

Subj09 201 102 99 0 0 

Total 1851 (100%) 262 (14.15%) 1216 (65.69%) 373 (20.15%) 0 (0%) 
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TABLE 20: CORNER DETECTION EVALUATION AFTER CLUSTERING (INNER CORNER) - ERROR 

STATISTICS, IN PIXELS. 

Sample Frames Average σ Maximum 

Subj01 279 3.99 2.41 15.09 

Subj02 161 6.51 2.17 12.11 

Subj03 254 13.36 1.74 16.76 

Subj04 30 9.72 1.14 12.16 

Subj05 99 5.95 1.46 11.21 

Subj06 62 7.49 1.18 16.32 

Subj07 168 7.23 2.95 13.24 

Subj08 207 5.97 2.29 11.63 

Subj09 145 7.30 2.38 11.78 

Overall 1405 7.41 3.78 16.76 

 

 

 

TABLE 21: CORNER DETECTION EVALUATION AFTER CLUSTERING (INNER CORNER) - ERROR 

CLASSIFICATION STATISTICS, NUMBER OF FRAMES. 

Sample Frames Negligible Acceptable Unacceptable Failed 

Subj01 279 108 162 9 0 

Subj02 161 15 127 19 0 

Subj03 254 0 12 242 0 

Subj04 30 0 19 11 0 

Subj05 99 3 95 1 0 

Subj06 62 0 61 1 0 

Subj07 168 20 113 35 0 

Subj08 207 0 184 23 0 

Subj09 145 24 105 16 0 

Total 1405 (100%) 170 (12.10%) 878 (62.49%) 357 (25.41%) 0 (0%) 
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TABLE 22: CORNER DETECTION EVALUATION AFTER CLUSTERING (OUTER CORNER) - ERROR 

STATISTICS, IN PIXELS. 

Sample Frames Average σ Maximum 

Subj01 279 8.97 1.96 12.20 

Subj02 161 5.59 1.37 9.67 

Subj03 254 5.24 2.01 10.00 

Subj04 30 8.97 0.29 9.73 

Subj05 99 11.10 6.68 25.83 

Subj06 62 5.33 0.53 6.40 

Subj07 168 6.32 1.66 14.57 

Subj08 207 4.25 2.20 7.28 

Subj09 145 5.10 1.34 7.28 

Overall 1405 6.49 3.21 25.83 

 

 

TABLE 23: CORNER DETECTION EVALUATION AFTER CLUSTERING (OUTER CORNER) - ERROR 

CLASSIFICATION STATISTICS, NUMBER OF FRAMES. 

Sample Frames Negligible Acceptable Unacceptable Failed 

Subj01 279 13 186 80 0 

Subj02 161 17 144 0 0 

Subj03 254 60 194 0 0 

Subj04 30 0 30 0 0 

Subj05 99 0 60 39 0 

Subj06 62 0 62 0 0 

Subj07 168 0 162 6 0 

Subj08 207 82 125 0 0 

Subj09 145 59 86 0 0 

Total 1405 (100%) 231 (16.44%) 1049 (74.66%) 125 (8.90%) 0 (0%) 
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TABLE 24: BAR GRAPHS OF THE CORNER DETECTION ALGORITHM ERROR (INNER AND OUTER CORNER) 

FOR EACH TEST SEQUENCE. 
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TABLE 25: BAR GRAPHS OF THE CORNER DETECTION ALGORITHM ERROR AFTER CLUSTERING (INNER 

AND OUTER CORNER) FOR EACH TEST SEQUENCE. 
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FIGURE 32: COMPARISON OF CLUSTERING MODES AND SETTINGS (INNER CORNER). 
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FIGURE 33: COMPARISON OF CLUSTERING MODES AND SETTINGS (OUTER CORNER). 



EVALUATION OF THE 2D GAZE VECTOR CALCULATION ALGORITHM 

The evaluation of the 2D gaze vector calculation algorithm is essentially an evaluation of the eye-

tracker as a whole. In the previous subsections, the individual components of the algorithm were 

isolated and individually assessed without requiring input from any other components. For 

example, the iris boundary detection algorithm requires as input the pupil centre location and 

pupil contour; during the evaluation of the algorithm, this input was derived from the manually 

marked data such that the error assessed is purely based on the iris detection algorithm and not 

of the pupil detection and iris boundary detection algorithms in cooperation. 

In addition, the actual calculation of the 2D gaze vector from its inputs (initial pupil centre, initial 

pupil contour and eye corner locations) is performed in exactly the same manner both in the 

tracker and the manually marked data set. Thus, the accuracy of the 2D gaze vector calculation 

depends solely on the accuracy of its individual inputs. Having considered this, the error 

measured in this evaluation is the difference between the angle calculated from the set of eye 

features extracted by the tracker and the angle calculated from the set of eye features that were 

manually marked. 

The table below illustrates the average, standard deviation and maximum error values (degrees) 

for the complete test data set; for this test, the twelve (12) different positions recorded for each 

subject were used. 

On average, the gaze angle error is 2.78° with standard deviation 1.99°, which is a range that 

renders the eye-tracker practical for the target applications. In the worst case, the error reached 

a total maximum or 9.51°. It is important here to consider that a) the 2D gaze angle is affected 

both by errors in the pupil detection and errors in eye corner detection b) errors in manual 

marking of the pupil and eye corners as explained earlier will have also affected these 

measurements c) like any eye-tracker which requires subject calibration, the accuracy of the 

output is directly proportional to the accuracy of the calibration.  

A better benchmark may have been to measure the error after the 2D gaze angle has been 

classified into several distinct classes; this benchmark is offered as part of the case study, in 

Chapter 6. Further, a comparison of the trackable range and accuracy between the REACT eye-

tracker and the SR Research EyeLink-II is presented in the next section of this chapter. While 
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these systems were designed for dissimilar applications, this evaluation is offered as a 

comparative benchmark if the REACT eye-tracker were extended to track gaze on a screen. The 

REACT eye-tracker is the first eye-tracker that a) is specifically designed for tracking extreme, 

usually non-visual, eye-movements and b) is head-mounted but uses the eye corners as reference 

points instead of the glint. 

TABLE 26: 2D GAZE VECTOR CALCULATION EVALUATION - ERROR STATISTICS, IN DEGREES. 

Sample Frames Average σ Maximum 

Subj01 12 2.20 0.56 2.93 

Subj02 12 2.39 1.30 4.74 

Subj03 12 4.01 2.24 7.76 

Subj04 12 1.95 1.41 4.72 

Subj05 12 3.51 2.27 9.51 

Subj06 12 2.98 2.66 9.12 

Subj07 12 2.26 2.16 7.93 

Subj08 12 2.66 1.40 4.50 

Subj09 12 3.03 2.04 7.25 

Overall 108 2.78 1.99 9.51 

COMPARISON OF THE REACT EYE-TRACKER WITH SR RESEARCH EYELINK-II 

For the evaluation of the eye-tracker to be complete, it is necessary to know how it performs 

compared to other systems and whether it satisfies the requirements identified earlier in this 

thesis. To this end, the REACT eye-tracker was compared to a commercial eye-tracker commonly 

used in psychology studies (e.g. Altmann and Kamide, 2007), the EyeLink-II by SR Research. The 

comparison was geared towards comparing the tracking ability and accuracy of the two eye-

trackers over the full range of eye-movements possible. 

The EyeLink-II has been primarily designed to track the subject’s gaze onto a screen and an add-

on is available to enable gaze tracking with a scene camera. On the other hand, as reviewed in 

this thesis, the REACT eye-tracker has been designed to track the subject’s direction of gaze 

irrelevant to the world as it is concerned with non-visual eye-movements when the subject is not 
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focused on a visual target within the environment. Because of the different target applications, 

for this comparison to take place, the REACT eye-tracker had to be extended and a gaze-mapping 

scheme needed to be implemented that could map vectors from the image to locations on a 

screen.  

The homographic mapping and calibration scheme presented by Li et al. (2005) was 

implemented in order to provide this mapping. Similar to EyeLink, at the beginning of each 

experiment, nine (9) points are displayed on the screen (centre, corners and mid-points of each 

side). When the subject has fixated at each point (synchronized with a key press), the pupil 

position in the image is detected and the vector from the reference point to the pupil position is 

calculated and recorded. In contrast to the eye-tracker by Li et al. (2005), where the reference 

point is the corneal reflection, the REACT eye-tracker uses the middle point of the line that 

connects the inner and outer eye corner as reference. In brief, the mapping H is a 3x3 matrix that 

has eight degrees of freedom and is calculated by generating a constraint matrix using measured 

point correspondences and determining the null space of the constraint matrix through singular 

value decomposition; for further details the interested reader is referred to Li et al. (2005). 

The EyeLink is able to operate in two modes: 

a) Pupil-only mode. In this mode, only the pupil is tracked and its location in the image is 

mapped to the screen coordinates. According to the EyeLink specification (SR Research, 

2009) the tracker is able to operate within a range of ±30° horizontally, ±20° vertically 

and 0.5° of accuracy. 

b) Pupil and corneal-reflection (PCR) mode. In this mode, both the pupil and the corneal 

reflection are tracked and the vector between the two features is used to map gaze onto 

the screen. By using the corneal reflection as the reference point, the EyeLink can prevent 

the introduction of tracking errors from the slippage of its heavy headband (approx. 

420gr; SR Research, 2009). However, using the corneal reflection or glint also makes it 

vulnerable to loss of tracking when the corneal falls onto the sclera and is particularly 

hard to detect, as explained in Chapter 3. In PCR mode and with head-tracking enabled, 

the EyeLink specification indicates a conservative tracking range of ±20° horizontally, 

±18° vertically.  
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If the subject is placed 50cm away from a 24” screen, the tracking range of the EyeLink is 

approximately exhausted. A typical 24” screen measures approximately 52cm wide and 32cm 

tall, which at 50cm away from it, corresponds to a range of ±27° horizontally and ±18° vertically. 

This presented a significant problem for this experiment; the EyeLink needs to be calibrated 

within this range8 but the SDK that ships with EyeLink attempts to make full use of the screen 

resolution. Thus, if a large screen is used, the calibration points will be placed well beyond the 

tracking capabilities of the EyeLink and if a small screen is used, a limited range will be tested.  

The 84” screen previously used in this chapter provided us with a potential range of 

approximately ±60° horizontally and ±52° vertically (when the subject is placed 50cm away from 

the screen). To circumvent the above limitation of the EyeLink SDK, a false screen resolution of a 

virtual screen (384x288 pixels) was reported to EyeLink by the controlling software that was 

developed for the experiment and the maximum possible resolution was chosen for the screen 

(1600x1200 pixels). In this configuration, the virtual screen spanned approximately ±22.2° 

horizontally and ±16.95° vertically – a range within EyeLink’s tracking capabilities. Then, the 

calibration points dictated by the EyeLink SDK were translated such that they were correctly 

placed within the virtual screen, which is in turn placed in the centre of the actual screen as 

shown in Figure 34. 

A total of four subjects (all male, Caucasian, 25-35 years old) took part in this experiment. The 

subjects stood in front of the screen at a distance of 50cm and a chinrest was used to fix their 

head such that head-tracking can be turned off for EyeLink (head-tracking in EyeLink depends on 

four markers that need to be placed at the corners of the screen whose bounds must be within 

the specified tracking range ±30°/±°20). Additionally, the chinrest serves to eliminate errors 

from slight head-movement due to swaying of the subjects while standing, for both eye-trackers.  

The full screen was divided in increments of 100 pixels resulting in a maximum of           

points; the centre of the grid was manually adjusted according to the subject’s height such that he 

could focus on it by gazing straight ahead. Before the experiment, each subject tested his 

                                                             
 

8 This was found to be true experimentally. Outside of this range calibration failed too often making the 
test very cumbersome and tiring for both the experimenter and subjects. Of course, unless a successful 
calibration is performed, no eye-tracker would be able to operate. 
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maximum field of view by gazing at the full grid; rows or columns of points that were beyond 

their maximum field of view were removed from the grid resulting in a total of 

195/195/195/165 points (REACT) and 150/150/150/120 points (EyeLink-II) for each subject 

respectively. Fewer points were used for EyeLink-II as the eye-tracker’s visor blocked the top 

view beyond approximately 30°. During the trial the points were displayed in random order to 

avoid anticipatory eye-movements from the subject. 

1600 pixels
≅±60° 

384 pixels 
≅±22°

1
2

0
0

 p
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2
8

8
 p
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FIGURE 34: PHYSICAL AND VIRTUAL SCREEN FOR THE COMPARISON WITH EYELINK. 

 Calibration for the EyeLink involved displaying nine points on the virtual screen as described 

earlier. The REACT eye-tracker was calibrated using two different sets of nine points: a) the same 

set as the EyeLink and b) nine points that follow the same pattern but are spread across the 

complete field of view of the subject. Two calibration modes were used in order to perform a fair 

comparison to EyeLink as well as demonstrate the capability of REACT to operate and be 

calibrated beyond the range of the EyeLink-II. 

Data was recorded for both EyeLink modes (pupil-only and PCR mode) and for each of the two 

different calibration modes of REACT thus resulting in four trials per subject. During calibration 

of the EyeLink, it was ensured that it performs optimally by adjusting the headband and position 

of the cameras as necessary such that a good calibration result (less than 1° average validation 

error) was obtained on each trial and for all subjects. Subjects were given ten minutes rest 
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between each trial in order to minimise fatigue that could influence their ability to fixate their 

eyes in such a large number of points.  

Statistics for the error, in degrees of visual angle, of each mode across all subjects are shown in 

Table 27. The statistics were calculated for four different groups of ranges: 

a) The closest approximation (±23°/±23°) of the conservative ±20°/±18° tracking range as 

per the EyeLink specification.  

b) The closest approximation (±32.5°/±23°) of the pupil-only tracking range (±30°/±20°) as 

per the EyeLink specification. 

c) Beyond ±23°/±23°; that is, the complete range minus the ±23°/±23° range. 

d) Beyond ±32.5°/±23°; that is, the complete range minus the ±32.5°/±23° range. 

e) The complete range. 

The statistics were calculated in the above groupings such that the accuracy of the eye-trackers 

within the ranges in question can be analysed separately. The ranges were not exactly matched 

to the specification for two reasons: a) to have an evenly spread grid while minimising the 

number of points and consequently the fatigue of the subject and b) because the primary focus of 

this experiment is to test the maximum tracking range and associated accuracy of the eye-

trackers of the complete range. 

As expected, the EyeLink achieves a low error within the two constrained tracking ranges 

(2.44±3.56°, 3.30±5.53° for pupil-only mode and 4.09±7.63°, 5.23±8.33° for PCR mode) though 

higher than in the specification. This is not surprising given that within these ranges, only a small 

number of points were tested (25 and 35 for each range respectively) and some of these points 

were slightly beyond the specified maximum tracking range thus resulting in loss of tracking and 

high errors which significantly raise the average. The errors within the constrained field of view 

are below 1° if these outliers9 were to be removed. Since the REACT tracker does not suffer from 

such losses of tracking, it displays significantly lower than EyeLink error for the limited range 

calibration (1.11±0.73°, 1.57±1.14). The same cannot be said for the full range calibration, where 

                                                             
 

9 There is no reliable way to detect loss of tracking in the EyeLink. When tracking is lost, the eye-tracker 
will either output incorrect values or if the pupil is completely lost, it will be interpreted as a blink.  
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the error is 7.87±5.10°, 7.95±4.98. This is because the form of gaze mapping implemented in the 

REACT tracker for this experiment provides more accurate mappings near the calibration points. 

The results for the two “difference” groups that examine eye-movements beyond the specified 

tracking ranges are quite different, with the lowest error achieved by the REACT tracker in full 

range calibration mode, followed by the EyeLink in pupil-only mode, then the REACT tracker in 

limited range calibration mode and finally the EyeLink in PCR mode. These results are coherent 

to the expectations that can be reasoned about the experiment. 

The REACT tracker rarely suffers from loss of tracking as shown in the previous evaluation 

sections and thus its accuracy depends mostly on the accuracy of the pupil detection (reviewed 

previously) and the gaze mapping. In these groups, the gaze mapping algorithm performs best 

when calibrated with points that span the full range of targeted eye-movements and thus the 

REACT tracker in full range calibration mode comes first. The pupil-only mode of EyeLink is able 

to track over a larger range than the PCR mode and consequently suffers from loss of tracking 

less often (the pupil is easier to detect than the glint in large angle eye-movements), coming 

second. For the same reasons, the limited range calibration mode of the REACT tracker comes 

third while the EyeLink PCR mode last; for these groups, the glint will often fall onto the sclera 

thus resulting in loss of tracking for the EyeLink. 

Having said all that, looking at the distribution of the error across the test grid is much more 

informative than the above statistics which are easily influenced by high errors within each 

group. The distributions for both eye-trackers and all four trial modes are shown in Figure 35 

and Figure 36 respectively. 

The EyeLink shows consistently fair performance within the middle of the grid (approximately 

±32.5° horizontally and 23°/52° above and below the centre, vertically) in pupil-only mode. The 

highest errors are found outside this range, in all directions. In PCR mode, the map is much more 

inconsistent which is also not surprising given that it’s very easy for the glint to disappear in the 

sclera as mentioned several times before. Consistently low results can only be observed in a 

small central range of approximately ±23° in both directions. 

As explained before, the REACT tracker suffers from loss of tracking a lot less and thus the map in 

both modes is much smoother. In limited range calibration mode, the largest errors are observed 
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at the left, top and right edges of the map while in full range calibration mode, the errors on the 

edges of the map are small to medium and the highest errors are observed slightly more 

centrally than the limited range calibration mode. Once again, this is because the gaze mapping 

will be best near the calibration points.  

Cases where the hardware obscured the view of the subject can be clearly seen on the maps. For 

example, in the pupil-only EyeLink map, two symmetrically placed that are fairly high relative to 

its neighbours are observed near the centre, most likely where the camera mounts or the 

cameras themselves were in the field of view of the users. Similarly, one point with high error 

relative to its neighbours is observed near the bottom and to slightly to the right side of both 

REACT maps. 

One other artefact that needs to be explained is that the error progressively reaches high values 

towards the top left corner of both REACT maps. This increase is caused by the orientation of the 

camera in reference to the tracked eye. It is evident that the camera is pointed upwards and 

placed off-centre, to the one side thus distorting the uniformity of the feature points in the image. 

The resulting distortion is illustrated in Figure 37 where the pupil points that correspond to the 

calibration points for two subjects are shown. Of course, the camera can never be perfectly 

placed without a rigid setup and this problem exists with all other head-mounted eye-trackers 

including EyeLink (though because of the sophistication of the headband and the camera mounts, 

it is much easier to adjust the camera). Similarly higher error distributions are observed on the 

left side of the maps than on the right side for EyeLink though the pattern seems less severe than 

with REACT. This is due to two reasons: 

 EyeLink appears to use a mapping function that uses a quadratic equation versus a linear 

function in the case of REACT. Hence, with a non-linear approach it is better able to cope 

with the non-linearity in question.   

 EyeLink, being a mature product that has been in development for at least 15 years, 

appears to have developed some additional corrections mechanisms beyond the non-

linear mapping function. 

Both points above have been deduced from the debugging information that is written to the 

EyeLink output file. 
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In conclusion, the results of this experiment appear to support the specified tracking range of the 

EyeLink (±30°/±20° pupil-only, ±20°/±18° PCR mode). Even though the statistics calculated 

from the measurements taken in this experiment do not aid in precisely quantifying the range 

and accuracy within this field of view because of the high errors observed where there has been 

loss of tracking near the borders of this range, looking directly at the measurements for each 

subject reveals that when there was successful tracking the error is, in most cases, below 1°. This 

is not surprising as the EyeLink is a well-respected10 eye-tracker within academia and it would 

not have gained its reputation if it were not for its high accuracy and high sampling rate (250 or 

500Hz for EyeLink-II, other EyeLink models go up to 2000Hz). 

However, this experiment was primarily focused on exploring what happens beyond the tracking 

range that EyeLink is known to operate well within. It was expected that especially in PCR mode, 

loss of tracking would occur for visual angles beyond the specified tracking range because the 

corneal reflection would be placed in the sclera, thus disabling EyeLink from being used to 

successfully track eye-movements beyond ±30°/±20°. Indeed, it was found that, outside of this 

range, the EyeLink performs poorly in terms of accuracy and also performs inconsistently, 

especially in the horizontal direction and especially in PCR mode. In contrast, REACT performs 

satisfactorily well (average error 5.74° when it’s calibrated with points that span the full range) 

up to approximately ±56°/±52°, which is the full range of movements that were possible for the 

four subjects that participated in this experiment. 

Finally, the quadratic gaze mapping function of EyeLink was found to be superior to the linear 

function used by REACT, which in fact causes high errors concentrated on the top left corner of 

the grid (though this will depend on the exact placement of the camera). This is not a concern for 

the thesis presented here as gaze mapping is not required functionality of the REACT eye-tracker 

for the target application but it was only implemented such that this comparison would be made 

possible.  

 

  
                                                             
 

10 SR Research’s website (http://www.sr-research.com/publications.html) mentions that EyeLink has 
been cited in over 1400 peer-reviewed publications. 
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TABLE 27: ERROR STATISTICS FOR BOTH EYE-TRACKERS, IN DEGREES. DIFFERENT SETS OF STATISTICS 

ARE CALCULATED FOR THE FULL TRACKING RANGE OF EYELINK ACCORDING TO ITS SPECIFICATION 

(±30°/±20°), THE CONSERVATIVE TRACKING RANGE FOR PCR MODE (±20°/±18°), OUTSIDE THE LATTER 

TWO RANGES AND OVER THE COMPLETE RANGE. 

 
Average σ Maximum 

Within ±23°/±23° 2.44 3.56 19.81 

Within ±32.5°/±23° 3.30 5.53 37.27 

Beyond ±23°/±23° 7.38 8.29 46.97 

Beyond ±32.5°/±23° 7.16 7.81 46.97 

Overall 6.21 7.74 46.97 
EYELINK-II, PUPIL ONLY MODE 

 
Average σ Maximum 

Within ±23°/±23° 4.09 7.63 64.68 

Within ±32.5°/±23° 5.23 8.33 64.68 

Beyond ±23°/±23° 9.96 9.72 44.19 

Beyond ±32.5°/±23° 9.97 9.71 44.19 

Overall 8.55 9.59 64.68 
EYELINK-II, PUPIL AND CORNEAL-REFLECTION MODE 

 
Average σ Maximum 

Within ±23°/±23° 1.11 0.73 3.32 

Within ±32.5°/±23° 1.57 1.14 5.33 

Beyond ±23°/±23° 8.05 6.62 42.37 

Beyond ±32.5°/±23° 8.52 6.71 42.37 

Overall 6.88 6.61 42.37 
REACT, LIMITED RANGE CALIBRATION 

 
Average σ Maximum 

Within ±23°/±23° 7.87 5.10 23.53 

Within ±32.5°/±23° 7.95 4.98 23.53 

Beyond ±23°/±23° 5.94 5.46 26.01 

Beyond ±32.5°/±23° 5.74 5.51 26.01 

Overall 6.27 5.48 26.01 
REACT, FULL RANGE CALIBRATION 
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It was not possible to take measurements in this range 
because the EyeLink II visor blocks the view.

It was not possible to take measurements in this range 
because the EyeLink II visor blocks the view.

 

FIGURE 35: EYELINK-II ERROR (IN DEGREES, AVERAGE ACROSS ALL SUBJECTS) HEAT MAP FOR THE 

COMPLETE SET OF GRID POINTS BOTH FOR PUPIL-ONLY MODE (TOP) AND PUPIL AND CORNEAL-

REFLECTION MODE (BOTTOM). 
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FIGURE 36: REACT EYE-TRACKER ERROR (IN DEGREES, AVERAGE ACROSS ALL SUBJECTS) HEAT MAP 

FOR  THE COMPLETE SET OF GRID POINTS FOR BOTH CALIBRATION MODES; SAME NINE POINTS USED 

TO CALIBRATE EYELINK (TOP) AND NINE POINTS COVERING THE FULL FIELD-OF-VIEW (BOTTOM). 
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FIGURE 37: PLOTS OF THE PUPIL POSITIONS THAT CORRESPOND TO THE CALIBRATION POINTS 

DISPLAYED ON THE SCREEN FOR TWO SUBJECTS (TOP, BOTTOM). 
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EVALUATION OF THE REACT EYE-TRACKER HARDWARE USABILITY 

In the eye-tracking literature, usability is rarely assessed and the eye-tracker which forms the 

basis for the hardware design (Babcock and Pelz, 2004) of the REACT eye-tracker is no 

exception. This may be because the comfort of the user is not as important for applications 

where the subject does not interact with another human being as is the case for applications 

targeted by the REACT eye-tracker. Another reason may be that engineers are much more 

concerned with the functional aspects of eye-tracking than with the non-functional 

requirements. 

In this project, it was thought prudent to include a basic evaluation of the eye-tracker’s usability 

that could highlight any major problems with its usability and the comfort of the subjects that 

would render it unusable for the applications in question. Thus, the basic questionnaire shown 

below () was distributed to the subjects that have taken part in all experiments; the results are 

shown in Table 29. Question one aimed to establish the overall level of comfort that subjects 

perceived themselves as experiencing during the experiments. Questions two and three were 

targeted towards establishing how aware the subjects were of the eye-tracker’s presence on 

their head and its presence in their visual field respectively. Finally, question four asked the 

subjects whether they would hypothetically participate in a longer experiment (eight out of nine 

subjects made only occasional use of the eye-tracker with each session lasting less than five 

minutes) and in case of a negative answer, question five enquired as to whether this was relevant 

to a usability aspect of the eye-tracker (such as it being too heavy etc.). 

As can be seen from Table 29, the majority of subjects (seven out of nine) answered they were 

generally comfortable wearing the eye-tracker. Subject five gave a medium rating (neither 

comfortable not uncomfortable) and only subject five and six gave a low rating on this question 

(2 – uncomfortable). The average across subjects is 3.6 points.  

In this small sample, a rating of 4 (comfortable) on question one corresponded to a rating of 1-2 

in question two (very unaware/unaware of the eye-tracked being placed on their head). Subjects 

one and nine who gave a rating of 4 on question one answered that they were neither aware nor 

unaware of the eye-tracker being placed on their head. In terms of invasiveness, a neutral rating 

can still be considered as favourable as it means that no discomfort that could distract the subject 

from the task at hand was caused. Of course, it also means that subjects that gave a neutral rating 
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are less likely to quickly forget about the existence of the eye-tracker than subjects that gave a 

positive rating. Finally, only subjects three and six gave a high (unfavourable) rating for question 

two.  

 

TABLE 28: USABILITY QUESTIONNAIRE. 

Q1. How comfortable was it to wear the glasses/eye-tracker? 

Very 

uncomfortable 
1 2 3 4 5 

Very 

comfortable 

 

Q2. How aware were you of the feeling of wearing the glasses on your head throughout the 

experiment? 

Very unaware 

(not aware) 
1 2 3 4 5 Very aware 

 

Q3. How aware were you of the eye-tracker's camera in your vision throughout your experiment? 

Very unaware 

(not aware) 
1 2 3 4 5 Very aware 

Q4. If you were asked and your schedule allowed, would you participate in an experiment where 

you would have to wear the eye-tracker for up to 20 minutes? 

Yes No 

 

Q5. If you answered no in the above question, would that be because of any aspect of the eye-

tracker's usability (e.g. feels too heavy on the head, is tiring to wear etc.)? 

Yes No 
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TABLE 29: USABILITY QUESTIONNAIRE RESULTS. 

Subject Q1 Q2 Q3 Q4 Q5 

Subj01 4 3 2 Yes - 

Subj02 4 1 3 Yes - 

Subj03 4 4 2 Yes - 

Subj04 4 1 2 Yes - 

Subj05 3 3 1 No No 

Subj06 2 4 1 Yes - 

Subj07 4 2 2 Yes - 

Subj08 4 2 1 Yes - 

Subj09 4 3 1 Yes - 

Average 3.6 2.5 1.6 - - 

 

Question three received much more favourable answers than question two; four out of nine 

subjects gave a rating of 1 (very unaware), four out of nine subjects gave a rating of 1 (unaware) 

and subject two only gave a rating of 2 (neither aware nor unaware).  

The results are certainly interesting; in question two, the rating was never higher than 4 (aware) 

but in question three the ratings did not exceed 3 (neither aware nor unaware). It is 

hypothesised that this is a favourable result; to be clear, it is hypothesised that unfavourable 

ratings in question three would have a more significant effect to the invasiveness of the eye-

tracker than unfavourable ratings in question two. This hypothesis is made because: 

 During a longer experiment where subjects would have time to become comfortable with 

wearing a foreign device on their head, they would slowly drift away from the 

consciousness of the eye-tracker and immerse themselves in the task or conversation 

central to the experiment. 

 While movements of the head would not change the feeling of wearing the eye-tracker, if 

the eye-tracker significantly blocked their field of view, the subject would be reminded of 

its existence as their eyes moved. 
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The above reasoning, is reflected in the results as the subjects who gave an unfavourable rating 

on question one, gave an unfavourable rating in question two and a favourable rating in question 

three. It would thus appear that they judged the overall invasiveness of the eye-tracker based on 

the feeling of wearing it versus the eye-tracker camera being somewhat in their visual field.  

In fact, subject five who gave a neutral rating on question one, at the end of the questionnaire, 

commented that he gave such a rating and answered “No” to a hypothetical future experiment 

because he found that his eyes hurt after each experimental session. This strain on the eyes must 

have been caused by trying to looking at points on the screen that spanned a larger area than 

comfortable to the subject. Thus, it can only be concluded that this was due to a 

miscommunication on the experimenter’s part as the ability to reduce the radius of the circle that 

the points laid on was offered to each subject such that their eyes are not strained at any time.  

Similarly, subject six commented that “it felt like the glasses wanted to slip to the end of the nose” 

and added that it may have been because he had never had to wear glasses before. Other than 

becoming familiar with the feeling of wearing glasses, from this statement, it can be concluded 

that it would be helpful to try several different frames for the eye-tracker, including metallic ones 

and find which frame or frames gathered the best responses from test subjects. 

The overall performance of the eye-tracker in terms of invasiveness may be summarised by the 

comments of subject nine who stated that “overall, the eye-tracker was pretty unobtrusive 

although I was always aware that it was there”.  Even though all subjects reported that they were 

aware of the eye-tracker’s existence, they found it was comfortable to wear it during the short 

experimental sessions and that they were rarely aware of the eye-tracker in their visual field. 

Thus, in longer sessions when the subject is engaged in the natural task of conversing with the 

interviewer, the invasiveness of the eye-tracker would be reduced from minimal to negligible. 
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CHAPTER 6: CASE STUDY 

As explained in the introductory chapter and the literature review, our motivation in building the 

REACT eye-tracker has been to enable researchers interested in eye-movements that are not 

generated by outwards visual attention to e.g. tracking a visual target but rather by inwards 

attention (i.e. thinking) to perform experiments using eye-tracking technology.  

Thus, in addition to the extensive evaluation of the eye-tracker in the previous chapter, it was 

decided to demonstrate the eye-tracker’s applicability to a real-world scenario through a case 

study, at the same time illustrating the value of using an eye-tracker. For reasons that have been 

mentioned before and will be mentioned again throughout this chapter, the pilot experiment of 

this chapter does not attempt to support or disprove the NLP EAC model. The results from the 

experiment cannot support or disprove the model. 

Once again bearing in mind our motivation through the NLP literature, a pilot study was 

designed where a subject was interviewed by the experimenter on various topics such as 

education and hobbies, meanwhile recording the subject’s eye-movements, for a period of 

approximately twenty (20) minutes. The conversation was then manually transcribed and the 

position in time of each word uttered by both the subject and experimenter was also manually 

recorded. This process resulted in a rich data set that allowed the precise overlay of eye-

movements, in time with speech. The video and audio were recorded simultaneously into the 

same file and thus synchronisation was taken care of. 

In this chapter, the extension of the eye-tracker to continuously track the subject’s eye-

movements over time is described in detail. The pilot study experiment and its relation to the 

NLP eye-accessing cues model are briefly discussed with the aid of selected extracts. Finally, the 

full data set of the transcribed text with timestamps and overlaid eye-movement classifications 

are presented in Appendix B.  

EYE-TRACKING OVER TIME 

In Chapter 3, the algorithms involved in detecting the set of eye features necessary to calculate 

the 2D gaze of the subject were deconstructed in full detail. Regardless of the inherent 

complexity in calculating these low-level features, they provide little information to a simple user 
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of the eye-tracker who is only interested in what eye-movements the subject made during the 

experiment.   

While the 2D gaze calculated using these features can be considered a higher-level output of the 

eye-tracker, it still serves poorly as the main output of the eye-tracker for several reasons 

discussed below.  

First of all, it generates a large amount of data samples, far larger than what can be manually 

analysed by the average user. At 29.97 captured frames per second, 59.94 fields are analysed by 

the eye-tracker per second. That is almost 3596 data samples per minute. 

Not only is the amount of data samples too large to manually process, but it may also be 

considered as unnecessary. The speed at which eye-movements are detected is limited by the 

capturing rate, which is dictated by the camera. For example, smooth pursuit11 studies that 

require very high sampling rates could not be conducted because the camera is only capturing 

29.97 frames/59.94 fields per second and would require much higher sampling rates (in the 

order of 250-500Hz) that only high-end commercial eye-trackers, such as the SR-Research 

EyeLink-II, can offer due to the inherent hardware costs. Thus, in the range of eye-movements 

that can be tracked by the REACT eye-tracker, the experimenter will most likely be interested in 

fixations, during which the eye is fixated for a certain amount of time at one location12 and what 

will be referred to as “search paths” in this chapter. 

Before even designing the REACT eye-tracker and while conceiving its requirements, a 

camcorder was used to record the eye-movements of a subject during short interviews. After 

transcribing the conversation and using the video time stamps to automatically overlay the eye-

movements on the text, it was noticed that the subject would often perform several sequential 

eye-movements with small pauses in between before fixating at a final position and answering 

the question. For example, when asked about the nature of a particular experience, the subject 

may have looked right, paused for a very brief amount of time, then looked up and to the right 

                                                             
 

11 Smooth pursuit is defined as the eye-movements that occur when the eyes closely follow a moving 
object. 
12 Normally, fixations refer to the point in the world that the subject is fixating upon. However, in this 
discussion, fixations simply refer to when the eye has moved off the centre and remains fixed for some 
time. 
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before finally answering the question. This sequence of eye-movements will be referred to as 

“search paths” from this point on.  

Search paths although explicitly defined here are not a new observation. In NLP, they have been 

modelled through the notions of lead and representational system as introduced in the literature 

review of Chapter 2. However, in research related to the NLP EAC model, only a limited set of 

researchers have taken into account “search paths” or sequences of eye-movements such as 

Baddeley and Predebon (1991). For further information, see Chapter 2. 

Thus, fixations and search paths are the eye-movements that the REACT eye-tracker is targeted 

at selecting. This selection is done as follows (illustrated in the state diagram of Figure 38): 

1) The current pupil position is detected and the corresponding 2D gaze angle is calculated.  

2) If the subject is looking straight ahead, the frame is skipped. Otherwise, it is classified into 

one of the eight categories listed below, the class is recorded and a count is maintained. 

3) On the next frame, if the classified position is the same as the one recorded, the count is 

updated. If the subject is now looking straight ahead, the count is reset.  

4) If the count reaches a threshold    , the frame is selected. This allows fixations to be 

selected. 

5) When a frame is selected,      is set to a lower threshold            and the algorithm 

continues onto the next frame. This allows for search paths to be detected and its 

component frames selected. 

Eye-movements are classified into eight (8) classes as per the classes introduced in NLP (Bandler 

and Grinder, 1979; Figure 1); specifically up, up and to the left, up and to the right, left, down, 

down and to the left, down and to the right, right. For a 2D gaze angle   and      , a class   is 

assigned as follows (illustrated visually in Figure 39): 

     for –
 

 
   

 

 
 

      for 
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      for     
 

 
         

     for               

      for             
 

 
 

As before, all processing takes place off-line. 

A tolerance angle of 
 

 
 is used for the   and   classes on the bottom hemisphere (180° to 360°) to 

accommodate for the reduced vertical resolution that is a direct result of separating each frame 

into two fields (see de-interlacing in Chapter 3). The tolerance angle is further reduced to 
 

 
 for 

the top hemisphere of classes   and   (0° to 180°) to accommodate for the skew that is a direct 

result of the camera point upwards.  

As analysed in Chapter 4, a calibration frame is required to initialize the eye-tracker to the 

subject. This is done by asking the subject to look straight ahead with his or her chin 

approximately parallel to the floor (posture is adjusted with the help of the experimenter). The 

eye-tracker automatically re-initializes itself to accommodate for changes in the location of the 

corners on every frame where the pupil position is within a contour twice as large as the initial 

pupil contour. In most sequences the latter contour is a little smaller than the iris. Re-

initialization is not performed if the eye-tracker has re-initialized in the last 60 frames 

(approximately 10 seconds). 

During re-initialization, the “initial pupil position”   used to calculate the 2D gaze angle is 

updated to    from the new corner locations   
  and   

  such that: 

    

    
 

  
    

  
    

 

This calculation is based on the assumption that the geometry acquired during the calibration of 

the eye-tracker as described by the distances between the eye corners and the initial pupil 

position is correct. 
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FIGURE 38: EYE-MOVEMENT SELECTION STATE DIAGRAM. 
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FIGURE 39: ILLUSTRATION OF THE CLASSIFICATION SCHEME. 

CASE STUDY PILOT EXPERIMENT 

The pilot experiment designed for this case study aimed to be a simplistic approximation of an 

experiment that would be performed to further investigate the correlation of eye-movements 

and thinking modalities or in other words, the NLP eye-accessing cues model.  

The basic premise of such an experiment would be to investigate whether the eye-movement 

class is correlated to the question type or verbal predicates used by the subject when answering. 

Of course, because of the necessity to isolate and verify the subject’s cognition discussed in 

Chapter 2, it would be appropriate to design an academically-sound questioning methodology 

based on the field of psycho-phenomenology (see Mathison and Tosey, 2008a; Mathison and 
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Tosey, 2008b). However, such a task is beyond the scope of this project and this experiment only 

serves to illustrate the value of an eye-tracker in its actualisation. 

Additionally, as far as the analysis and technology involved is concerned, the structure of both 

experiments is essentially the same. Irrelevant of the questioning methodology, the task at hand 

is to select relevant eye-movements from the input video and accurately synchronize them with 

the transcribed text, which has been the focus of this case study. Normally, verbal predicates 

(such as “see” is visual, “hear” is auditory etc.) would be assigned to the transcribed text and this 

would allow the correlation with the eye-movement classes to be examined. This has not been 

done because a) lacking an academically-based questioning methodology the results would not 

have much meaning and b) it is not a technically difficult task beyond using the algorithms 

described in this thesis. 

In this case study, a simple interview took place. The interviewer asked some basic questions 

about the subject’s educational background and performance, his plans for the future as well as 

his hobbies, musical taste and travelling. The interviewer was deliberately sat on a chair with a 

white screen as the background; this was done to eliminate any interference caused by eye-

movements to objects in the scene that may have attracted the subject’s attention. Further, the 

chairs of both the subject and experimenter were adjusted such that their heads were on the 

same level and when the subject was looking at the experimenter, he would appear as looking 

straight ahead in the captured images. This was done to eliminate any interference that would 

have been caused the subject resting his/her eyes on the experimenter and the corresponding 

eye-movement. However, theoretically speaking, these eye-movements would not have been 

large enough to interfere in any way. 

The discussion section below will briefly comment on the output of the case study and highlight 

the advantages of using the REACT eye-tracker in such a study. To avoid delving into complex 

matters that are beyond the scope of this thesis, the eye-movement-speech latency (Griffin and 

Bock, 2000) is not discussed or taken into account in this chapter. 

DISCUSSION 

The case study is a rich data set of speech from the subject and interviewer and the subject’s eye-

movements. In order to quantitatively examine such data, an appropriate visualisation method is 
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required to enable this (e.g. Figure 40). To generate this visualisation, the following process was 

followed: 

a) The full conversation was manually transcribed in a text file; speech uttered from the 

subject was transcribed separately to that uttered by the interviewer and they are 

displayed on the top (blue) and middle (green) ribbons respectively. 

b) Each word from the transcript was manually synchronized to the speech audio, precise to 

0.1 seconds. To signify the start and finish of the utterance of each word, the ribbon is 

marked with the respective darker colour. Thus, when a word has been uttered by the 

interviewer, the ribbon is marked with dark blue and the word is drawn; an appropriate 

size font was used to make sure the word fits in its respective bounding box13. Each line 

(set of three ribbons, Figure 40) represents a maximum time length of 5 seconds and the 

beginning timestamp is displayed on the top-left hand-corner of each line. Both ribbons 

(subject and interviewer) use the same timeline, a tick is marked at the top of the 

interviewer’s ribbon every 1 second. 

c) Eye-movements that were selected by the eye-tracker were classified and a cropped 

thumbnail of the source image was drawn at the bottom ribbon, with the respective 

classification drawn below it, abbreviated (e.g. L is left, while DL is down and to the left). 

The thumbnails were placed at the exact time they occurred minus some thumbnails 

which were adjusted for presentation purposes (e.g. when part of the thumbnail would 

not appear because the eye-movement occurred at the end of the individual timeline). 

For each point in time that there is no eye-movement below the speech, it means that the 

subject was fixating at the same position as the previous eye-movement displayed, 

looking straight ahead, or moving their eyes. 

                                                             
 

13 However, in some cases when the words were uttered in a short space of time (0.1-0.2 seconds), a 
minimum font size was enforced to ensure visibility, which has also created problems in some cases and 
words have been drawn on top of each other. 
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FIGURE 40: EXAMPLE OF VISUALISED CASE STUDY DATA SET. 

As can be seen, the eye-tracker has successfully selected and classified relevant eye-movements 

which accurately exhibit the behaviour of the subject’s eyes during the interview. But, before 

further commenting on the transcript, it is very important to make clear that this case study does 

not aim to prove, disprove or even provide evidence towards either case regarding the NLP EAC 

model. Since an academically-sound questioning methodology has not been developed, such 

attempt would be subject to the criticism of past research in Chapter 2. Without a solid 

questioning methodology, any study like this would constitute anecdotal evidence, at best. 

Instead, the point of this case study is to highlight some of the eye-movement patterns that have 

previously been referred to in Chapter 2, where possible and, to demonstrate the benefits of 

using the REACT eye-tracker in non-visual eye-movement research. The full transcript is 

available for review in Appendix B. 

First of all, obvious as it may be in an intuitive way, it is interesting to note that eye-movements 

have mostly taken place in time with or before relatively long pauses or while connective words 

such as “well” and “and” were uttered by the subject, in the example shown below (Figure 41). 

This is probably the first time this has been stated in the literature based on collected data versus 

the perceptive powers of the experimenter. In a full-scale study, it would be particularly easy to 

classify connective words and pauses in the subject’s speech, correlate it with eye-movements in 

the vicinity and thus quantify this effect and find if it is statistically significant. This pattern of 

eye-movements will not have been acknowledged by model 1 of Figure 3. 

Earlier, in Chapter 2, one of the main criticisms of past EAC model research was that in some 

studies, eye-movements were rated only after the experimenter has finished uttering the 

question (models 2-5, Figure 3). During the length of the interview, several eye-movements have 

followed a pattern contrary to this assumption: often, an eye-movement is made by the subject 

before the experimenter has finished uttering the question, such as shown below (Figure 42). 
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Once again, this statement is based on actual timed data for the first time in the literature and 

similarly, this pattern’s occurrence could be quantified and labelled as statistically significant or 

not. 

Another example of the two aforementioned patterns is displayed in Figure 43. 

 

FIGURE 41: EYE-MOVEMENTS TAKING PLACE IN TIME WITH OR BEFORE PAUSES OR WHILE 

CONNECTIVE WORDS ARE UTTERED. 

 

 
FIGURE 42: EYE-MOVEMENTS ARE SOMETIMES PERFORMED BEFORE THE END OF THE QUESTION. 

 

 

FIGURE 43: FURTHER EXAMPLE OF EYE-MOVEMENTS BEFORE THE END OF THE QUESTION AND DURING 

A PAUSE. 
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Multiple eye-movements in response to a question (models 4-5 and model 3 to a lesser extent, 

Figure 3) were recorded in very few past EAC model research studies and when they were, the 

analysis was somewhat rigid, only analysing the same number of occurrences across questions 

(see Chapter 2 for details). From the case study, it can be observed that particularly long pauses 

are often synchronised with a “search” or simply, multiple eye-movements, as in the two 

examples offered below (Figure 44). The following interpretations could intuitively be made: 

 The long pause can be taken to mean that the requested information is not readily 

available and is searched for during the pauses. In the second example, “I can’t 

remember” is perhaps then uttered as an unconscious attempt by the subject to keep the 

speech continuous and conversation interactive. 

 Normally, a smaller number of eye-movements follows the end of a question and so, if 

such a pattern of eye-movements can be shown to be statistically significant and 

interpreted as an information-lookup strategy, a set of multiple eye-movements in 

response to a question may be taken to mean that the information is not readily available 

and not readily found during a search. Thus, the position of the eye keeps changing until 

the information is found or the search aborted. 
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FIGURE 44: TWO EXAMPLES FROM THE TRANSCRIPT OF THE CASE STUDY WHERE MULTIPLE EYE-

MOVEMENTS WERE PERFORMED IN ANSWER TO A QUESTION. 

As before, with the use of the eye-tracker, this could be easily be verified in a full-scale study by 

classifying even longer pauses and speech patterns that demonstrate an inability to locate certain 

information and correlating them with the corresponding set of eye-movements. 

With regards to correlating the question type or verbal predicates spoken by the subject to the 

corresponding eye-movement class as suggested by the NLP EAC model, limited relevance may 

be shown in the case study. This is because verbal predicates of any particular modality were 

rarely spoken by both the subject and interviewer i.e. predicates of unspecified modality, such as 

“think”, were spoken instead of predicates that can be classified into one of the visual, auditory or 

kinaesthetic modalities, such as “see”, “hear” or “feel”.  

This is most probably for three reasons: 

a) The interview content was to a certain extent informational versus deeply subjective. 

That is, information about the past, present and future of the subject was collected but 

the interview did not delve deep into the experiences associated with each question. 
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b) According to NLP literature, highly intellectual people such as academics demonstrate a 

preference towards predicates of unspecified modality such as “think”. 

c) The particular communication style of the subject and/or interviewer may have limited 

the responses in this way. 

Having said that, three examples of eye-movements consistent with the EAC model are displayed 

below14: a) “I’d say” corresponds to an auditory eye-movement, b) a sequence of eye-movements 

around “comfortable” begins and ends with a kinaesthetic eye-movement and c) “love”, a verb 

associated with feeling is correlated to a kinaesthetic eye-movement. 

 

 

 

FIGURE 45: THREE EXAMPLES OF EYE-MOVEMENTS CONSISTENT WITH THE EAC MODEL. THESE 

RESULTS ARE FOR ILLUSTRATION PURPOSES ONLY AND CANNOT PROVE OR DISPROVE THE MODEL. 

                                                             
 

14 Please note that these examples are not sequential in time as the timestamp on the top-left hand corner 
shows. Also, the eye-movements are interpreted as if the subject adheres to the EAC generalization for 
normally-organized right-handed people from Figure 1. 
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It must also be noted that there are several eye-movements in the transcript that cannot be 

strictly interpreted as above. In the example show below, when the subject is speaking of being 

“stressed” and feeling “pretty calm” (kinaesthetic cues), an eye-movement relevant to visual 

construction is observed (Figure 46). Of course, this may be interpreted as the subject 

constructing a visual image of being stressed and/or feeling calm. Once again, this demonstrates 

the absolutely essential requirement for an elaborate and academically validated questioning 

methodology that is able to resolve such ambiguities.  

 

FIGURE 46: A VISUAL EYE-MOVEMENT IS OBSERVED NEAR THE UTTERANCE OF KINAESTHETIC CUES. AS 

PER THE EAC MODEL, THIS CAN BE INTERPRETED AS THE SUBJECT CONSTRUCTING A VISUAL IMAGE OF 

THEMSELVES BEING THAT WAY. 

The only quantitative analysis that was performed on the case study is related to the 

classification of eye-movements, as shown in Table 30. The class output by the eye-tracker 

(labelled “Auto class”) was compared to a manual classification performed by the experimenter 

(labelled “Manual class”). The manual classification proved to be a much harder task than 

anticipated as ambiguities were eminent in some cases when the eye-movement in question was 

on the borderline between two classes. In addition, in some cases, it was particularly hard to 

discriminate between upwards eye-movements and eye-movements on the baseline; this is both 

because of the reduced vertical resolution that is the result of de-interlacing and because the 

camera is pointed upwards thus reducing the apparent range of upwards eye-movements. Where 

ambiguous, the classification was marked as such and highlighted bright yellow whereas 

erroneous classification were marked red. 
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From the total 150 eye-movements, 7 received an ambiguous classification by the experimenter 

and 6 were erroneously classified by the eye-tracker (Table 30; Figure 47).  

It is questionable whether ambiguous classifications can be avoided unless the subject’s eyes are 

also captured from another camera placed on the same level and the video may be consulted to 

resolve ambiguities. Of course, while this would be feasible in an experimental, for the eye-

tracker, setup, it would probably prove impractical for eye-tracker users conducting 

experiments. 

All 6 classification errors were caused by the eye-movement being too close on the borderline 

between two classes. The classification algorithm, as described in Chapter 5, will determine the 

class solely on the 2D gaze angle calculated and based on pre-set thresholds. As with any other 

statically set threshold, it is bound to fail some of the time, when the thresholded value is very 

close to the threshold itself. In other words, when the gaze angle is on or close to the borderline 

between two classes, a human rater may be able to distinguish between the classes (though not 

always as proved by the 7 ambiguous ratings) but the algorithm cannot. 

However, not only is the number of errors small but the classification algorithm can be improved 

to a) signal ambiguity in the classification and b) attempt to disambiguate between the two 

classes. The latter could be potentially be done by an algorithm based on the following concept: 

 Creating an elliptical model   of the typical extreme eye-movements (U, UR, R, DR, D, DL, 

L, UL) 

 Finding the closest point    to the current pupil position  , on ellipse  . 

 Calculate the distance between    and the centre of ellipse   and compare it against the 

corresponding distance between the centre and the typical eye-movement point for each 

of the two candidate classes. 

 Return the class that is closest to   . 

In conclusion, in this chapter, a simplistic case study was successfully designed and performed in 

order to demonstrate the usefulness of using the eye-tracker in an experiment relating to non-

visual eye-movements. Finally, the eye-tracker demonstrated satisfactory performance in 

selecting and rating the eye-movements throughout the case study. 

 



TABLE 30: CASE STUDY CLASSIFICATION 

ERROR TABLE. 

EM Auto 

Class 

Manual 

Class 

Correct? 

1 UL UL Yes 

2 DL DL Yes 

3 L L Yes 

4 UL UL Yes 

5 DL DL Yes 

6 DL DL Yes 

7 L L / UL Ambiguous 

8 UL UL Yes 

9 UL UL Yes 

10 L L Yes 

11 L L Yes 

12 DL DL Yes 

13 L L Yes 

14 D D Yes 

15 D D Yes 

16 D DR No 

17 L L Yes 

18 L L Yes 

19 UL UL Yes 

20 UL UL Yes 

21 U U Yes 

22 L L Yes 

23 UL UL Yes 

24 U U Yes 

25 UL UL Yes 

26 UL UL Yes 

27 L L Yes 

28 UL L / UL Ambiguous 

29 UL L / UL Ambiguous 

30 L L Yes 

31 L L Yes 

32 L L Yes 

33 UL UL Yes 

34 R R Yes 

35 DR DR Yes 

36 UR UR Yes 

37 UL UL Yes 

38 UL UL Yes 

39 DL DL Yes 
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40 L L / UL Ambiguous 

41 DL DL Yes 

42 L L Yes 

43 UL UL Yes 

44 UL UL Yes 

45 DL DL Yes 

46 DL DL Yes 

47 UL U No 

48 UL UL Yes 

49 U UR No 

50 UR UR Yes 

51 R R Yes 

52 UL UL Yes 

53 L L Yes 

54 UL UL Yes 

55 UL UL Yes 

56 UL UL Yes 

57 UL UL Yes 

58 UR UR Yes 

59 L L Yes 

60 UL UL Yes 

61 UL UL Yes 

62 L L Yes 

63 L L Yes 

64 UL UL Yes 

65 UL UL Yes 

66 UL U No 

67 DR DR Yes 

68 D D Yes 

69 DL DL Yes 

70 UR UR Yes 

71 UR UR Yes 

72 L L Yes 

73 DL DL Yes 

74 L L Yes 

75 UL UL Yes 

76 UR UR Yes 

77 UR UR Yes 

78 DR DR Yes 

79 UL UL Yes 

80 DL DL Yes 

81 L L Yes 
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82 UL UL Yes 

83 U U Yes 

84 UR UR Yes 

85 DR DR Yes 

86 UL UL Yes 

87 UL UL Yes 

88 L L Yes 

89 UL L / UL Ambiguous 

90 L L Yes 

91 UL UL Yes 

92 DL DL Yes 

93 UR UR Yes 

94 DR DR Yes 

95 UL UL Yes 

96 L L Yes 

97 DL DL Yes 

98 R R Yes 

99 UR UR Yes 

100 UL UL Yes 

101 U U Yes 

102 UR UR Yes 

103 R R Yes 

104 UL UL Yes 

105 UR UR Yes 

106 DR DR Yes 

107 UL UL Yes 

108 UR UR Yes 

109 D D / DR Ambiguous 

110 DL DL Yes 

111 DL DL Yes 

112 UR UR Yes 

113 DR DR Yes 

114 R R Yes 

115 DR DR Yes 

116 UL U No 

117 UL UL Yes 

118 UR UR Yes 

119 L L Yes 

120 DL DL Yes 

121 UL UL Yes 

122 U U Yes 

123 UR UR Yes 
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124 DR DR Yes 

125 R R Yes 

126 UL UL Yes 

127 U U Yes 

128 UR UR Yes 

129 UL UL Yes 

130 UR UR Yes 

131 R R Yes 

132 DL DL Yes 

133 UL UL Yes 

134 UL UL Yes 

135 UL UL Yes 

136 DL DL Yes 

137 L L Yes 

138 DL DL Yes 

139 U U Yes 

140 UL UL Yes 

141 UL UL Yes 

142 UR U / UR Ambiguous 

143 DR DR Yes 

144 UL UL Yes 

145 UL UL Yes 

146 R R Yes 

147 R R Yes 

148 UL U No 

149 UL UL Yes 

150 UL UL Yes 

 

 

 

 



 

FIGURE 47: CLASSIFICATION STATISTICS BAR CHART. 



CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

Neuro-Linguistic Programming and the Eye-Accessing Cues model have helped form the 

motivation behind this thesis; as discussed in Chapter 2, the EAC model has been the centre of 

research attention for almost as long as video-based eye-trackers have existed, with each study 

displaying one or more significant methodological errors, two of which have been pivotal.  

The first is the lack of development of a questioning methodology with strong academic 

foundations, with the emphasis on “development”. From the review of Chapter 2, one can be 

certain that eye-movements are directly linked to brain activity but we have yet to scientifically 

establish whether eye-movements in conversation can be consistently triggered and much more 

importantly, whether a questioning methodology that goes to depth, rather than breadth as all 

research studies have done to date, will consistently elicit the same or similar-enough eye-

movements. These are very important research questions that need to be answered before 

researchers attempt to directly prove or disprove the EAC model itself and they are not trivial to 

answer. These limitations were also established through the presentation of this review at the 

First International NLP Research Conference and later through its publication in the conference 

proceedings (Diamantopoulos et al., 2008).  

Thus, in light of the inconsistent results and therefore tentative conclusions of past research as 

well as recent aforementioned developments in academia, it was established that the EAC model 

is in fact a very complex model which requires further research attention and rigorous 

examination if it is going to be proved or disproved.  

Research in the EAC model has stopped for almost two decades and now is a good time to 

continue these efforts, as eye-tracking technology has matured and become more affordable too, 

which brings us to the second pivotal methodological error: the lack of use of a reliable and 

precise method to record, select and rate eye-movements. 
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As discussed in Chapter 3, to date, no eye-tracker had fulfilled all the requirements of tracking 

non-visual eye-movements15.  

First of all, existing eye-trackers have, without exception, been designed to track visual eye-

movements (within 30° of angular range) and are severely limited when faced with the task of 

tracking non-visual eye-movements which tend to occur outside the regular field-of-view (30°-

55°). A formal explanation of this empirical conclusion cannot be found in the literature though 

an intuitive conclusion is easily deduced; in order to minimize strain of the eyes and maximize 

visual acuity, people tend to turn their heads in the general direction of the observed object and 

accurately shift their eyes to bring it in focus.  

Secondly, invasiveness is a major concern in this particular application as it may “break” the 

rapport between the subject and experimenter. Such a link seems particularly plausible in light 

of recent research; in their experiments, Tognoli et al. (2007) found that the phi complex is a 

brain rhythm that serves social functions of the brain (both independent and those requiring 

coordination between people) and produces wave patterns similar to those of mirror neurons. 

Thus, the invasiveness of the eye-tracker can significantly affect the results of the study. 

Traditionally, the invasiveness of an eye-tracker is related to physiological variables such as 

whether it is mounted on the subject’s body or whether the subject’s movement is restrained 

through a device like a chin rest or a bite bar. In this thesis, it was updated to include a major 

psychological variable: whether the subject is aware of being watched or not. This awareness 

was suggested to be mainly affected by three factors: a) the feeling of a foreign device on the 

subject’s head, b) its existence in the subject’s visual field and c) by the calibration procedure 

which inevitably highlights the non-natural conditions of an eye-tracking experiment. Taking all 

these variables into consideration, a remote eye-tracker which is the least invasive in the old 

definition may not be the least invasive in the updated form of invasiveness. 

Additionally, requirements of practical significance were determined to be important for this 

research. Specifically, maintaining low-assembly cost, ease of use and transparency in calibrating 

the eye-tracker to the subject is vital to making eye-tracking technology more accessible and 

ensuring its adoption in such research. Also an important requirement of practical significance is 

                                                             
 

15 Eye-movements not concerned with viewing or tracking an object in the external environment. 
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the viability of tracking the eyes of both the subject and interviewer. As the technology becomes 

commonplace and experimenters become more ambitious in terms of how technology can 

facilitate their work, it is essential to minimise the required effort to setup such experiments. 

Finally, in light of the aforementioned development in requirements by researchers, the ability to 

extend the eye-tracker to 3D may prove useful. 

Thus, in Chapter 2, the need for a specific type of eye-tracker was established and in Chapter 3, 

current eye-trackers were surveyed in search of one that would fulfil all of the above 

requirements. Failing to find one, the main objective of the current research work was 

established and in Chapter 4, a novel set of feature extraction algorithms were presented for 

extracting the location of the pupil, the iris radius and location of eye corners from images taken 

from an actively-illuminated head-mounted eye-tracker. This eye-tracker was based on a low-

cost hardware design previously published by Babcock and Pelz (2004) thus satisfying the cost-

related requirement early on. 

First, the pupil is converted to binary using simple global thresholding. Connected components in 

the image are found using the common labelling algorithm and an ellipse is fitted on each 

component to find the one with the best fit and thus select the pupil. The contour is then refined 

using an active contour (also known as snake), before the final pupil location is calculated. Then, 

the iris radius is calculated using an adaptation of edge strength by Zhou and Pycock (1997), 

originally developed to segment images of cells. The eye corners are located in the image by 

making use of the partial x- and y- derivatives and initiating a search in groupings of local 

maxima. The accuracy of both the iris radius and eye corners search is increased by collecting 

several candidates and using a novel statistical algorithm to filter outliers that is simple and yet 

effective. Finally, the 2D gaze direction is calculated using only one calibration point which can be 

extracted without explicit instructions to the subject and thus the required ease of use and 

subject calibration transparency mentioned earlier is achieved.  

The REACT eye-tracker is one of very few eye-trackers to detect and use the eye corners as 

reference points to calculate the gaze direction in 2D and the only one to do so from images taken 

with an actively-illuminated head-mounted eye-tracker; as extensively discussed throughout 

Chapter 4, the appearance of the eye and the inner eye corner in particular is significantly 

different close-up than it is from far and the eye corners cease to appear as symmetric. This is a 



187 
 

significant development in eye-tracking as the eye corners are always visible, in contrast with the 

glint which can fall onto the sclera and be very hard or impossible to detect. 

Moreover, accurately calculating the iris radius means that by incorporating a 3D model of the 

eye and providing more calibration points, should future research require it, the eye-tracker can 

be extended to calculate 3D gaze in a similar fashion to Wang et al. (2005). The use of features 

versus an appearance-based model also means that the eye-tracker can be adapted to other 

potential mainstream or sub- applications without much effort. 

In Chapter 5, the evaluation of the eye-tracker took place. Specifically, the accuracy of the feature 

extraction was assessed both independently and as a whole. The eye-tracker achieved a practical 

level of performance that renders it acceptable for use in the target research application(s). In a 

comprehensive test of range and accuracy, the REACT eye-tracker was found able to track eye-

movements in the complete viewing range of the participants (approx. ±56°/±52°) with an 

average error of approx.  5° over the whole range and an average error of approx. 1.5° within a 

narrow field of view (±30°/±20°). 

 The practicality of the eye-tracker for the target application was further demonstrated in 

Chapter 6, where a pilot study was designed and served as a case study of a real-world 

application. Algorithms to select and classify the subject’s eye-movements that are relevant to 

the experimenter were introduced; the classification was based on the eight (8) classes of the 

EAC model. Last but not least, a basic evaluation of the eye-tracker’s usability and impact on the 

perceived comfort of the subjects was performed and yielded satisfactory results. 

While a formal study of the improvement over a human rater was not performed, it should follow 

that the eye-tracker is able to more accurately track eye-movements, especially when performed 

quickly and in complex sequences. Thus, the REACT eye-tracker is able to facilitate extensive and 

in-depth research of non-visual eye-movements.  

The implications for the computer vision components are several. First, it was demonstrated that 

reference-based eye-tracking is possible over a large field of view by using the eye corners are 

reference instead of the glint. Second, the edge strength algorithm used originally for cell 

segmentation was applied in a completely new context and problem. As these algorithms are 

further improved, or with better hardware, higher levels of accuracy can potentially be achieved. 
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FUTURE WORK 

Future work can be divided into work related to enhancing the eye-tracker and work related to 

the investigation of the EAC model. 

In terms of further enhancing the eye-tracker, the accuracy of the eye corner detection algorithm 

can be further improved by developing an algorithm to refine the eye corner locations using the 

full scale image, by performing a local search within a small window centred at the eye-corner 

location found at the reduced scale images. 

Also, accuracy would be further increased by placing the camera straight in front of the eye, with 

the lens coplanar to the front surface of the eyes (i.e. if we assume a reference system at the 

eyeball centre, the camera would be placed at a location  –      ], with the x-axis going into the 

person). However, since this would significantly block the subject’s field of view and thus make 

the eye-tracker significantly invasive, an alternative solution would be to estimate a three-

dimensional transform that would transform the feature-points to the location they would 

appear to be at if the camera was placed that way. The latter transform could perhaps be 

estimated by creating a model of extreme eye-movements and collecting several subject 

calibration points. As the extra calibration would come at the cost of added invasiveness, one 

would need to be careful in designing such an algorithm. In addition, such an algorithm would 

most likely help resolve ambiguities in the classification of eye-movements. 

The usability assessment of the eye-tracker (Chapter 5) is a rare occurrence in eye-tracking 

literature; usually, usability is taken for granted. That is not to say that care is not taken by 

researchers while designing the eye-trackers to minimise interference. However, no formal study 

has taken place to assess just how invasive eye-trackers are and how they may affect the person’s 

behaviour. Thus, eye-tracking system designs have to be no longer limited to functional 

requirements and pay more attention to non-functional requirements. In the case of the REACT 

eye-tracker, different frames (including metallic ones) and designs must be tested with a 

concurrent assessment of their impact in perceived and actual subject invasiveness (perceived 

being that reported by the subject on questionnaires and actual being any change in behaviour 

found through scientific means).  
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One possible direction in actually reducing the invasiveness of the eye-tracker is to explore the 

uses of a wireless technology to transmit the video to a recording device. With the development 

of low-powered wireless protocols with relatively high bandwidth such as Bluetooth 3.0, this is 

certainly a possibility that appears feasible and must be explored. 

It was also noticed that while the eye-tracker is not dependant on the exact positioning of the 

camera in relation to the subject’s eye, results tend to be more accurate when the camera is 

better placed. This is also the case with most, if not all, commercial eye-trackers and two have 

been tested by the author. It would be useful to develop feedback mechanisms that help the 

experimenter to adjust the eye-tracker such that the best possible results are achieved. 

Of course, the most obvious future work is a full-scale NLP experiment. As discussed earlier, 

before attempting to directly examine the EAC model again, a questioning methodology needs to 

be designed, most probably based on procedures from the field of psycho-phenomenology, which 

is concerned with the exploration of subjective experience. Further, the eye-tracker enables past 

research with regards to the behaviour of eyes during conversational tasks to be made concrete 

and accurate conclusions to be drawn. 

 With the continuous development of eye-tracking, a transparent technological solution where a 

speech recognition engine is combined with automated eye-tracking to enable fully automated 

analysis of an experiment similar to that of the case study of Chapter 6 can be sought for. Such a 

development would further encourage researchers to perform the required experiments and not 

be burdened by the manual work involved in transcribing the speech, selecting and rating the 

eye-movements and synchronising them to the text – not to mention that the result of such a task 

would be at best crude if done manually. 

If any truth is found in the EAC model, numerous doors will open for human-computer 

interaction or perhaps human-computer training. For example, in a study by Malloy (1987) it 

was found that spelling performance could be significantly be improved by visualising the word 

at the same time as directing the person to look up and to their left. One cannot help but to 

envisage a computer system, which with the aid of the REACT eye-tracker and through the use of 

speech synthesis can consistently enforce this behaviour in pupils while at the same time 

providing them with interesting spelling tasks and giving feedback in terms of their spelling 

score – a system not that different to an educational game.   
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APPENDIX A: EYE-TRACKING HARDWARE 

A recent attempt to build a low-cost, lightweight eye-tracker was made by Babcock and Pelz 

(2004). The latter eye-tracker comprised one eye camera (monocular) and one scene camera 

which are mounted on the subjects’ head on a glass frame and whose images are multiplexed into 

one video stream and recorded onto videotape for offline processing. In combination with the 

Starburst algorithm (Li et al., 2005), it enables the eye-tracker user to track the subject’s eye-

movements in any natural environment. The entire system is also lightweight enough to package 

into a backpack and hence allows the subject to be mobile. After performing off-line processing, 

the eye-movements could be overlaid over the scene camera video.  

The REACT eye-tracker presented in this thesis is a modified, scaled-down version of the eye-

tracker presented by Babcock and Pelz (2004). Why this design was chosen is explained in detail 

in chapters 2 and 3. This appendix briefly presents both eye-trackers as well as their similarities 

and differences; Table 31 summarizes. Figure 48 shows a photograph of the experimenter 

wearing the eye-tracker. 

Both eye-trackers are monocular but they can be easily extended for binocular eye-tracking but 

this would add to their invasiveness to the subject’s field of view as well as complicate post-

processing if the two eye-movement data sources were to be combined. Thus, a close-up video of 

the eye and its movement is recorded in both cases through a Supercircuits PC206XP 

monochrome pinhole camera; the relevant camera’s properties are summarized in Table 32.  
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FIGURE 48: PHOTOGRAPH OF THE EXPERIMENTER WEARING THE EYE-TRACKER. 

 

TABLE 31: SUMMARY HARDWARE COMPARISON OF THE EYE-TRACKER PRESENTED HERE AND THE EYE-

TRACKER DEVELOPED BY BABCOCK AND PELZ (2004) 

Hardware aspect Babcock and Pelz (2004) REACT Eye-tracker 

Number of Eye Cameras Monocular 

Eye Camera Type Supercircuits PC206XP monochrome pinhole camera 

Scene Camera 
Supercircuits PC53XS colour 

camera 
None 

Scene Reference Pointer Laser diode projection system None 

Infrared Sources One 

System Mount Safety glasses 

Power Source 12V DC – unknown 12V DC power supply 
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TABLE 32: SUPERCIRCUITS PC206XP CAMERA SPECIFICATION 

Image Sensor ¼” BIWCMOS 

Video System EIA/CCIR 

Effective Pixels 510x492 (EIA) / 500x582 (CCIR) 

Scanning System 2:1 Interlace 

Resolution 640x480 

Synchronization Internal 

Horizontal Sync Freq. 
15.734 kHz (EIA) / 15.626 kHz 

(CCIR) 

Vertical Sync Freq. 60 Hz (EIA) / 50 Hz (CCIR) 

Video Output 1Vp-p. 75 Ohms composite 

Lens 
3.5mm/F2.6 (Standard), 

3.1mm/F3.4(3T) 

Power Supply/Current DC 12V / 20mA (max) 

Dimensions (WxH) 8.5mm x 8.5mm 

Weight 10gr 

 

The PC206XP camera encompasses some of the most desirable properties for a head-mounted 

eye-tracking system.  

 At only 10 grams, it is a very lightweight camera and thus decreases or even eliminates 

any subject discomfort. The well-respected commercial EyeLink-II eye-tracker which is 

also head-mounted weighs an enormous 420 grams (SR Research, 2009). In our 

preliminary tests with the EyeLink-II, this weight disadvantage often caused subjects to 

complain, ask for a break after a short time (10-15 minutes) of wearing the eye-tracker or 

even ask to discontinue the experiment. The total weight of the REACT eye-tracker is 

approximately 60 grams which allows for prolonged experiments with little to no user 

discomfort. In fact, as discussed in the hardware usability evaluation section of Chapter 5, 

most subjects answered that they would be open to taking part to a 20-minute 

experiment where they would have to wear the eye-tracker at all times. 
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 Its small weight also allows it to be mounted on a lightweight, non-metal frame, such as 

safety glasses. This also contributes to the total weight of the eye-tracker headgear as 

well as to a positive user attitude towards the eye-tracker. 

 The camera’s small size is also reflected by its dimensions; at a square 8.5mm, it can 

easily become part of the subject’s field of view and it will rarely obscure any objects in 

the environment from the subject. In combination with the camera being off-centre and 

thus not blocking the subject’s central field of view, subjects are barely aware of the 

existence of the eye-trackers existence in their visual field. As discussed in the usability 

evaluation section, in general, subjects answered that they were unaware of the tracker’s 

existence in their visual field. 

 Despite its small size, the camera is able to capture at a relatively high-resolution: 

640x480 pixels interlaced video at 29.97 frames per second. After de-interlacing, this 

becomes 640x240 at 59.98 fields per second. Such resolution efficiency can be said to be 

ideal for a head-mounted eye-tracker that is not targeted to analyse high-speed eye-

movements. 

 The camera itself requires a power source capable of delivering 12V DC and consumes a 

maximum current of 20mA. As before, such low requirements allow the minimization of 

the head-mounted hardware. 

Both the REACT eye-tracker and the eye-tracker by Babcock and Pelz (2004) use a combination 

of an infrared light source pointing towards the subject’s eye and a non-infrared filter mounted 

on the camera lens to introduce the dark pupil effect as explained in past chapters. The effect of 

capturing the eye using the infrared spectrum is described in extensive detail in the next section. 

On the hardware side: 

 A standard infrared (IR) LED that transmits light at a wavelength of 940nm is used as the 

illumination source. It requires 1.2V to power it and provides a safe, for the subject’s 

eyes, amount of infrared light. When illumination regulations come into effect (Hansen 

and Ji, 2010), it is almost certain that the REACT eye-tracker will require no modifications 

in order to pass. 

 The non-infrared filter attached to the camera lens is a Kodak Wratten 87c equivalent 

(Babcock and Pelz, 2004), which blocks most (400-700 nm) of the natural light spectrum 
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(380-750 nm; Starr, 2005) and thus allows only the infrared light emitted by the IR LED 

to pass.  

The only two components that require power in the REACT eye-tracker are the PC206XP camera 

(12V) and the IR LED (1.2V). A standard 220V AC input, 12V DC output power supply was used, 

in conjunction with a power transformer that converts 12V to 1.2V DC to power the LED. If our 

application required portability, this power supply could have easily been replaced by a series of 

8x1.5V batteries. The circuit diagram for the power transformer is shown in Figure 49 below. 

 

FIGURE 49: POWER TRANSFORMER CIRCUIT DIAGRAM. 

Mounting the eye-tracker and cabling 

Since the REACT eye-tracker is so lightweight, it can be safely and easily mounted on a pair of 

plastic safety glasses. In fact, with the absence of the scene camera and laser diode (Babcock and 

Pelz, 2004), it is even possible to remove the plastic glass from the front of the safety glasses and 

just use their frame. This significantly reduces the obstruction of the subject’s field of view; even 

though the plastic glass is clear, it adds to the experience of “wearing”. In other words, with the 

plastic glass removed, some subjects may even forget they are wearing the eye-tracker after 

quickly acquiring a level of comfort with them (as discussed in the usability evaluation). 

The cabling between the eye-tracker headset and the ground components, if used 

inappropriately, can cause discomfort to the user. Four cables are required: 

 Ground (common) 

 12V+ (power source for the camera) 

 1.2V+ (power source for the IR LED) 

 Video signal carrier  
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For example, if the cables are too heavy, they can tilt the safety glasses as the cables can often 

weigh more than the frame itself. Similarly, if the cables are too thick, they can be a constant 

reminder to the subjects that they are wearing the eye-tracker. On the other hand, if the wrong 

types of cables are used, the eye-tracker will not work; specifically, if the video is carried in a 

non-shielded wire, the video signal does not get across intact due to electrical interference. Thus, 

a shielded 4-core wire is used. 
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APPENDIX B: CASE STUDY FULL TRANSCRIPT 
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APPENDIX C: PUBLISHED AND SUBMITTED PAPERS 

Published papers include: 

Diamantopoulos, G., Woolley, S. I., and Spann, M., 2008. A critical review of past research into the 

Neuro-Linguistic Programming Eye-Accessing Cues model. In: Proceedings of the First 

International NLP Research Conference. Surrey, UK. 

Diamantopoulos, G., Spann, M., 2005. Event Detection for Intelligent Car Park Video Surveillance. 

Elsevier Journal of Real-Time Imaging, Special Issue on Video Object Processing for Surveillance 

Applications, 11 (3), pp. 233. 

The paper that follows is for submission to the Special Issue of the Signal, Image and Video 

Processing Journal entitled “Unconstrained Biometrics: Advances and Trends”. 
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Abstract 

The Neuro-Linguistic Programming Eye-Accessing Cues model suggests that there is a correlation between 

eye-movements and the internal processing mode that people employ when accessing their subjective 

experience. Past research on the model used direct viewing or at best video recording of the subject to 

select and rate eye-movements. The aforementioned methods are not only error-prone but also have a 

low-detail output compared to a modern eye-tracker (e.g. time information is missing) thus negatively 

influencing the reliability of the results. While a plethora of eye-tracker designs is available to date, none of 

them has been designed to track non-visual eye-movements (eye-movements that are a result of neuro-

physiological events and are not associated with vision), which tend to range outside the normal visual 

field and thus perform poorly in such cases. Therefore, this paper introduces a set of novel algorithms for 

the extraction of relevant eye features (pupil position, iris radius and eye corners) that are combined to 

calculate the 2D gaze direction and to classify each eye-movement to one of eight classes from the model. 

The applicability of the eye-tracker is demonstrated through a pilot study that serves as a real-world 
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application case study. The performance of the eye-tracker is found to be practical for the intended 

purpose. 

Keywords  

Eye-movements, eye-tracking, neuro-linguistic programming eye-accessing cues, eye feature 

extraction, gaze 

1 Introduction 

Eye-tracking is a field that has been actively research for the past few decades and while eye 

trackers have thus changed dramatically over the last few decades, eyes are still mainly studied 

as a functional organism of vision. With the exception of studies in rapid eye-movements during 

sleep, it was only recently that eyes were studied as a part of the brain and its function (in the 

waking state). While there is a reasonable amount of studies relating eye-movements to speech 

activities such as reading text or maps, very few studies have involved the recording and tracking 

of eye-movements with non-visual task performance. 

To be clear, the term non-visual tasks refers to those tasks which do not explicitly rely on vision 

to be performed [13]. Similarly, the term non-visual eye-movements refers to eye-movements 

concerned with non-visual tasks. 

The Neuro-Linguistic Programming (NLP) Eye-Accessing Cues (EAC) model was introduced in 

[2] and suggests that the direction of non-visual eye-movements indicates the modality (visual, 

auditory, kinaesthetic) of their subjective experience a person is currently accessing. Simply said, 

it is said that when a person16 is looking down and to their right, they are accessing a feeling 

associated with the experience they are talking about or examining internally. 

While it cannot be denied that eye-movements are hard-wired to brain function, the NLP EAC 

model was not scientifically validated by its authors and in a critical review of EAC research that 

appeared at later dates and attempted to (dis-)prove the model, it was shown that the results 

                                                             
 

16 This is a generalization offered by Bandler and Grinder (1979) for a cerebrally normally-organized right-
handed person.  
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suffered from severe methodological and experimental flaws [4]. The main flaw that is relevant 

to this discussion is the use of direct viewing to record, select and rate the eye-movements, which 

has been the genesis of very significant limitations. 

Studies relevant to the NLP EAC model and other such models would have benefited by the use of 

eye-tracking systems. However, selecting a suitable eye-tracking system for this task does not 

prove as easy. This is for several reasons, the most important one being that eye-trackers to date 

were designed to track visual eye-movements [7] [12] [15]. Whilst the classification of visual 

versus non-visual eye-movements is not significant in itself, visual eye-movements are normally 

bound by a much smaller field of view. By contrast, when a person is thinking his or her eyes will 

usually shift to one extremity of the eye socket (irrelevant of the direction). Thus, if the person 

was asked to look at the location indicated by this shift, he or she would have turned his or her 

head and performed a much smaller eye-movement to reach the target; this behaviour is largely 

undocumented. What is, however, documented is the tendency of subjects to shift their eyes 

when asked to answer a question (not related to a visual task) and before they return to looking 

at the interviewer [8]. 

Therefore, it is no surprise that eye-trackers designed to track visual eye-movements fail to track 

non-visual eye-movements of such extremities and the need for development of an eye-tracker 

that is able to track such eye-movements is introduced.  

This paper is concerned with the development of the Robust Eye-Accessing Cues Tracker 

(REACT) whose main requirements are to maintain a high level of accuracy while tracking non-

visual eye-movements as well as minimize invasiveness and cost. The REACT eye-tracker is 

head-mounted but very lightweight (approx. 60 grams) and is thus minimally invasive.  A head-

mounted approach was chosen over a remote camera one as to minimize cost and increase the 

resolution of the captured images and consequently the accuracy viable by the eye-tracker. 

Moreover, a remote camera requires that the head is tracked and not only does that increase the 

computational complexity but it also decreases the ability of the eye-tracker to track extreme 

eye-movements as discussed earlier. The hardware design is based on the low-cost eye-tracker 

presented in [1], with the scene camera and associated hardware removed. As such, no more 

time will be spent discussing the hardware design itself. 
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On the hardware-level, the eye-tracker works by illuminating the eye with infrared light while 

blocking most of the visible light spectrum with an infrared filter imposed over the camera lens. 

This produces the dark-pupil effect which allows for the easy detection of the pupil and, in a 

sense, offloads some of the processing to the hardware. The captured images are then processed 

in software and a set of three eye features are detected: the pupil centre and contour, the iris 

radius and the location of the eye corners. Finally, features are combined in order to calculate the 

2D gaze angle and classify each eye-movement to one of eight eye-movement classes extracted 

from the EAC model [2]: up, up and left, left, down and left, down, down and right, right and up 

and right. 

This paper is organised as follows. Section 2 describes the extraction of the eye features (pupil 

centre and contour, iris radius, and eye corners) in detail. Section 3 describes the calculation of 

2D gaze and its classification to one of eight classes. Section 4 is concerned with the performance 

evaluation of the eye-tracker and Section 5 describes a pilot study experiment that was designed 

to serve as a real-world case study. Some concluding remarks are offered in Section 6. 

2 Eye feature extraction 

Active illumination from one or more infrared sources is a common method used in eye-tracking 

[7] [12] [15] to produce the dark- or bright-pupil effect. The bright-pupil effect is produced when 

the light source is coaxial to the camera and the dark-pupil effect otherwise [6]. Either effect is 

particularly useful in locating the pupil as it is highly-contrasted to the iris which has different 

reflection properties and thus appears as grey, as shown in Figure 1 (in this particular setup, it is 

the dark-pupil effect). 

 

Figure 1: Example input image. 
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Pupil contour estimation 

The first step in detecting the pupil is thresholding the input image        to a binary image    

with a threshold value   such that: 

        {
                    

             
 

Using connected components labelling, the binary image can be converted to a higher-level 

description of the image content. Then, a minimum and maximum blob area is defined (     and 

     respectively) and used to filter blobs resulting from random noise (too small) and blobs 

that are formed in the darker areas of the image (where the infrared illumination fades rapidly). 

    is now the set of pupil candidates. If the set is empty, the default threshold value    is 

adjusted to     ,     ,      and      and the thresholding and labelling is applied again. 

This adjustment is necessary because the threshold is not chosen adaptively and in some cases 

may include too much or too little of the pupil. 

By taking into account the elliptical shape of the pupil, the algorithm to select the pupil blob from 

the set of candidate blobs     {          } is as follows. For each blob    in    , the outmost 

pixels             are selected by scanning each line within the blob’s bounding rectangle and 

selecting the first and last pixel that matches the blob’s label. The set of pixels                 is 

then used to fit an ellipse       using the algorithm described in [10]. For each ellipse      , a 

measure of the fit error        is calculated as the average of the Euclidean distance between the 

detected points to the ellipse contour (see Figure 2). Finally, the pupil contour estimate blob 

       is found by selecting the blob in set     which has the minimum error. 
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FIGURE 2: ILLUSTRATION OF THE DISTANCES USED TO CALCULATE THE ELLIPSE FIT ERROR ON A 

HYPOTHETICAL PUPIL ELLIPSE (RED LINES DESIGNATE THE DISTANCES WHOSE AVERAGE IS THE 

ERROR ESTIMATE). 

Pupil contour refinement 

After performing an initial estimation of the pupil contour from the thresholded image, it is 

necessary to further refine it; since global thresholding is used, the results are very much 

dependent on the threshold value used. Whilst the pupil is always dark in the images, just how 

dark it is will depend on the camera topology (distance from the eyeball and angle of positioning 

i.e. exactly how the infrared light falls on the pupil), its pupil reflection properties and their 

variance between subjects. The aforementioned refinement is done in the REACT eye-tracker 

through the use of active contours [3], also known as snakes. The greedy snake algorithm 

implemented in the REACT eye-tracker is derived from [19]. 

The snake is iterated a predefined number of times and the new spline points define the refined 

pupil contour        {       }. The final output of this component comprises        and the 

pupil centre  

  ̅                     
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Iris radius calculation 

Locating the iris is a problem that has been tackled several times before but usually in remote 

eye-tracker setups with significantly different image formations (e.g. [14] [17]). Thus a novel 

approach is proposed here. 

Even though it may have been possible to design the eye-tracker without locating the iris 

boundaries, doing so provides two significant advantages: a) it provides a robust starting point 

for the challenging task of locating the eye corners which is a very challenging task and b) it 

allows the eye-tracker to be extended to calculate the 3D gaze provided the camera is fully 

calibrated; one such approach is found in the remote eye-tracker system developed in [17]. 

A similar task to the detection of the iris boundaries, is cell segmentation [22]. Cells, much like 

the iris, are fairly uniform in terms of the pixels’ intensity levels on the inside. In a similar vein, 

cell image background is also uniform, like the sclera. Thus, the edge is not necessarily defined by 

the change in grey-level intensity, which is the basis of most edge-detectors, but rather by a 

change in the uniformity over a range of pixels. 

For a population of size  , the edge strength at a division  , is defined as [22]: 

    
 ̂ 

 ̂   ̂   
 

Where  ̂  is the standard deviation of the grey-level pixels. 

In the original edge strength calculation equation shown above [22], the whole population is 

considered; however, it was empirically found that with eye image data, edges attributed to 

eyelashes and eyelids can severely alter the standard deviation of each population and thus make 

the algorithm fail or return erroneous (in this context) results. Thus, the original formula was 

modified to work with a fixed window such that for a line of pixels  , given a constant window 

size  , the edge strength at a index   is equal to: 

     
 ̂         

 ̂         ̂       
  

The iris is detected on frames where the person is looking approximately straight ahead and 

several boundary candidates are generated using the above approach. A filtering algorithm 
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discards any candidate points whose x-coordinate falls outside the specified confidence interval. 

If the resulting set is empty after the filtering, the interval is progressively reduced using values 

        (99% interval),     (95.5% interval),         (90% interval) and     (68.27% 

interval). 

Eye corner detection 

Locating the eye corners is probably the most significant challenge for the set of input images 

taken with the REACT eye-tracker. The problem of locating the eye-corners has been tackled 

before [9] [11] [16] [18] [20] [21] but the systems in question operated, without exception, on a 

full-face, sometimes colour, image. 

Detecting the location of the corners is also a significant task as it provides two static points of 

reference. In the current configuration, these two reference points are useful in two ways: 

(c) To calculate the principal axis by which to calculate the 2D gaze angle (next section). The 

camera may be rotated as a result of misplacement by the experimenter or slippage of the 

frame.  

(d) In long sequences where the absolute position of the eyeball centre is bound to change 

over time (e.g. frame slippage etc.), the eye corners can be used to detect whether a re-

initialization of the eye tracker is required. 

Additionally, if the eye-tracker was to be configured to detect the 3D gaze (using a fully 

calibrated camera), the eye corners are essential to disambiguating the 3D vector solution. For 

more details, the interested reader is referred to [17]. 

In order to ease the task of finding the eye corners, some detail as well as noise is removed; the 

input image is scaled down to ¼ of its original size using Gaussian Pyramid Decomposition. Then, 

the partial x- and y-derivative of the scaled image   are calculated: 

        |               | 

        |               | 

For the y-derivative, non-maxima are suppressed locally using a 1x3 window. Whilst this is an 

irregular window (usually square windows are used for computer vision operations), it has been 
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empirically found that it preserves the vertical edges better than a 3x3 window. This is most 

likely because the derivative is a one-column operation too. 

As mentioned earlier, slightly different algorithms are used to detect the inner and outer corner 

due to the different eye morphological structure evident at this image resolution. Both 

algorithms are however based on the same principle: 

5. It is assumed that the edges formed between the eyelids and the sclera are within the top 

  local maxima for a restricted window (   ). This assumption was empirically tested.  

6. A grouping process begins near the iris boundary previously found and continues 

outwards, grouping all local maxima that are connected, using an 8-connectivity criterion. 

7. The groups are searched for a set of two predefined patterns (shown in Figure 3) and if 

found, the grouping is terminated at that point. These patterns have been empirically 

found to occur when the lower eyelid edge is joined with another face line edge and thus 

the purpose of this step is to separate the two edges. 

8. The final corner is selected from the group (outer corner) or pair of groups (inner 

corner) that demonstrate the maximum derivative energy. The energy of a group of 

points   is calculated as: 

 

                

 

For a pair of groups      : 

 

                     

The added steps and differences between the two algorithms are briefly summarized here. In 

Step 1, the search window includes both the upper and lower eyelid edges for the inner corner 

but only the lower eyelid edges for the outer corner. This is done for several reasons: 

c) For the inner corner: typically, the lower eyelid edge does not meet the upper eyelid 

edge. Thus, a distance criterion between the two edges has to be applied to find the 

corner. Further, often, the lower eyelid edge will be joined to a face line. The pattern 

detection offered in the main algorithm will in some cases alleviate this problem but only 

in combination with the distance constraint is the algorithm robust. 
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d) For the outer corner: typically, the camera is rotated around the vertical axis towards the 

outer corner thus making the eyelid-half on the inner corner side appear longer and the 

eyelid-half on the outer corner side appear shorter. Thus, the upper eyelid on the outer 

corner side is sloped several degrees more than the inner corner side. For this reason, 

grouping local maxima points on the top eyelid results in several disjointed groups. In 

order to robustly find the outer corner, pattern matching is combined with a refinement 

based on the partial x- derivative of the image. Since the upper eyelid edge and the lower 

eyelid edge always meet on the outer corner side, a strong maxima is created in the 

partial x-derivative image. This maxima is used to refine the corner in the last step and is 

found by searching a 10x5 window.  

 

FIGURE 3: PREDEFINED SEARCH PATTERNS FOR THE OUTER CORNER SEARCH. THE PATTERNS ARE 

REVERSED FOR THE INNER CORNER. 

Finally, to increase the robustness of the corner detection results which can be sensitive to noise, 

corner detection is applied over a group of   consecutive frames centered on the target frame 

and outliers in the resulting eye corners are calculated by the same statistical process used to 

filter iris boundary candidates. During development, it was found that this algorithm gave 

superior performance versus no clustering and a weighted means scheme where candidates are 

inversely weighted according to their distance to the mean and the weight sum is calculated. 

3 Calculation and classification of 2D gaze 

Calculating a 3D gaze vector would have required a fully calibrated camera (Wang et al., 2000). 

Even though there are modern means of camera calibration that greatly simplify the process, it is 

still too involved to be performed by the user of a system (versus the developer) like the REACT 
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eye-tracker. For this reason and given that when investigating non-visual eye-movements 3D 

gaze offers little or none additional information over 2D gaze, it was decided that 2D gaze 

calculation would suffice. 

The eye-tracker requires only one calibration point – that of the subject looking approximately 

straight ahead.  This calibration point can be provided on-line (in real-time while recording and 

tracking at the same time) or off-line (after the data sample has been recorded) and initializes 

the tracker by calculating the initial pupil position    and contour  , the iris radius   and the eye 

corners locations     and    . 

At each point in time, the 2D gaze vector is calculated as follows: 

 If the current pupil position    falls within the initial pupil contour  , it is assumed that 

the subject is looking straight ahead. 

 Otherwise: 

o A reference x-axis and corresponding y-axis are established using the line that 

connects the two corners     and    . 

o The centre of the reference axis’s is translated to coincide with the initial pupil 

position   . 

o The 2D gaze vector between    and    is calculated as well as the gaze angle  : 

  tan  
     

     
 

The above process is visually illustrated in Figure. 

 

FIGURE 4: CALCULATION OF THE 2D GAZE VECTOR. 
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4 Case Study 

In addition to the evaluation of the feature extraction and 2D gaze calculation algorithms, it was 

decided to demonstrate the eye-tracker’s applicability to a real-world scenario through a case 

study. Bearing in mind our motivation through the NLP literature, a pilot study was designed 

where a subject was interviewed by the experimenter on various topics such as education and 

hobbies, meanwhile recording the subject’s eye-movements, for a period of approximately 

twenty (20) minutes. The conversation was then manually transcribed and the position in time of 

each word uttered by both the subject and experimenter was also manually recorded. This 

process resulted in a rich data set that allowed the precise overlay of eye-movements, in time 

with speech. 

Fixations from the data sequence are selected as follows: 

6) The current pupil position is detected and the corresponding 2D gaze angle is calculated.  

7) If the subject is looking straight ahead, the frame is skipped. Otherwise, it is classified into 

one of the eight categories listed below, the class is recorded and a count is maintained. 

8) On the next frame, if the classified position is the same as the one recorded, the count is 

updated. If the subject is now looking straight ahead, the count is reset.  

9) If the count reaches a threshold    , the frame is selected. This allows fixations to be 

selected. 

10) When a frame is selected,      is set to a lower threshold            and the algorithm 

continues onto the next frame. This allows for search paths to be detected and its 

component frames selected. 

Eye-movements are classified into eight (8) classes as per the classes introduced in NLP [2]; 

specifically up, up and to the left, up and to the right, left, down, down and to the left, down and 

to the right, right. For a 2D gaze angle   and      , a class   is assigned as follows: 

     for –
 

 
   

 

 
 

      for 
 

 
        

     for             

      for            
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     for     
 

 
       

 

 
 

      for     
 

 
         

     for               

      for             
 

 
 

A tolerance angle of 
 

 
 is used for the   and   classes on the bottom hemisphere (180° to 360°) to 

accommodate for the reduced vertical resolution that is a direct result of separating each frame 

into two fields. The tolerance angle is further reduced to 
 

 
 for the bottom hemisphere of classes   

and   (0° to 180°) to accommodate for the skew that is a direct result of the camera pointing 

upwards.  

A calibration frame is required to initialize the eye-tracker to the subject. This is done by asking 

the subject to look straight ahead with his or her chin approximately parallel to the floor 

(posture is adjusted with the guidance of the experimenter). The eye-tracker automatically re-

initializes itself to accommodate for changes in the location of the corners on every frame where 

the pupil position is within a contour twice as large as the initial pupil contour. In most 

sequences the latter contour is a little smaller than the iris. Re-initialization is not performed if 

the eye-tracker has re-initialized in the last 60 frames (approximately 10 seconds). 

During re-initialization, the “initial pupil position”   used to calculate the 2D gaze angle is 

updated to    from the new corner locations   
  and   

  such that: 

    

    
 

  
    

  
    

 

An example of a visualised segment from the case study data with the speaker and subject 

speech, thumbnail of  the selected frame and output classification (abbreviated, e.g. up-left is UL) 

is showing in Figure 5. 
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FIGURE 5: EXAMPLE OF VISUALISED SEGMENT FROM THE CASE STUDY DATA. 

5 Evaluation and results 

Given that the REACT eye-tracked is feature-based, it makes sense to evaluate its performance in 

extracting these features by calculating the Euclidean distance between each feature point as 

extracted by the eye-tracker and the feature point as manually marked by the author. 

Thus, on each intermediate step of the 2D gaze calculation (detecting the pupil, calculating the 

iris radius and locating the corners), the appropriate set of frames were selected (the selection 

process will be described in detail) from the test video database and the errors were measured. 

The set of manually marked frames will also be referred to as the validation data set. 

It is desirable to assess the performance of each component separately and thus, for the iris 

radius and corners extraction algorithms that depend on previous outputs (pupil location and 

pupil location, iris radius respectively), they were taken from the validation data set such that 

there is no interference from errors from other components. The 2D gaze angle calculation 

algorithm was evaluated by comparing the 2D gaze angle calculated using inputs (pupil position, 

iris radius, corners locations) from the eye-tracker versus using inputs from the validated data 

set. 

The pupil detection algorithm was evaluated over 12,334 frames and showed an average 

accuracy of 2.04 ± 3.32 pixels. Over 1856 test frames, the iris radius was on average calculated 

with an accuracy of 2.11 ± 1.42 pixels. Over the same test set as the iris radius, the eye corners 

were on average calculated to an accuracy of 8.32 ± 5.78 and 8.41 ± 5.40 pixels for the inner and 

outer corner respectively. The 2D gaze direction angle was on average calculated with an 

accuracy of 2.78 ± 1.99 degrees, a range considered practical for the target applications. 

Finally, the class output by the eye-tracker was compared to a manual classification performed 

by the experimenter. The manual classification proved to be a much harder task than anticipated 
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as ambiguities were eminent in some cases when the eye-movement in question was on the 

borderline between two classes. From the total 150 eye-movements, 7 received an ambiguous 

classification by the experimenter and 6 were erroneously classified by the eye-tracker. 

It is questionable whether ambiguous classifications can be avoided unless the subject’s eyes are 

also captured from another camera placed on the same level and the video may be consulted to 

resolve ambiguities. Of course, while this would be feasible in an experimental, for the eye-

tracker, setup, it would probably prove impractical for eye-tracker users conducting 

experiments. 

All 6 classification errors were caused by the eye-movement being too close on the borderline 

between two classes. The classification algorithm will determine the class solely on the 2D gaze 

angle calculated and based on pre-set thresholds. As any other statically set threshold, it is bound 

to fail some of the time, when the thresholded value is very close to the threshold itself. In other 

words, when the gaze angle is on or close to the borderline between two classes, a human rater 

may be able to distinguish between the classes (though not always as proved by the 7 ambiguous 

ratings) but the algorithm cannot. 

Example output images of the extraction of the complete set of features during calibration are 

shown in Figure 6. 
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FIGURE 6:  EXAMPLE FEATURE EXTRACTION IMAGES. 

6 Conclusion 

The main objective of the current research work was to develop an eye-tracker that is able to 

track extreme eye-movements and calculate their gaze direction is 2D. A set of novel feature 

extraction algorithms were presented for extracting the location of the pupil, the iris radius and 

location of eye corners and calculating the gaze direction from images taken from an actively-

illuminated head-mounted eye-tracker. The accuracy of the feature extraction was assessed both 

independently and as a whole; the eye-tracker achieved a practical level of performance that 

renders it acceptable for use in the target research application(s). This was further demonstrated 

through the pilot study that was designed and served as a case study of a real-world application. 
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